The Riesel-Problem

Latest news:

2017-12-13: Riesel Prime 273809·28932416-1 found by W.Schwieger, PrimeGrid
2014-10-04: Riesel Prime 502573·27181987-1 found by D.Iakovlev, PrimeGrid
2014-10-02: Riesel Prime 402539·27173024-1 found by W.Darimont, PrimeGrid
2013-12-27: Riesel Prime 40597·26808509-1 found by F.Meador, PrimeGrid
2013-10-10: Riesel Prime 304207·26643565-1 found by R.Ready, PrimeGrid
2013-10-05: Riesel Prime 398023·26418059-1 found by V.Volynsky, PrimeGrid
2012-06-23: Riesel Prime 252191·25497878-1 found by J.Haller, PrimeGrid
2012-02-02: Riesel Prime 162941·2993718-1 found by D.Domanov, PrimeGrid
2011-05-31: Riesel Prime 353159·24331116-1 found by J.Reinman, PrimeGrid
2011-05-26: Riesel Prime 141941·24299438-1 found by J.S.Brown, PrimeGrid
2011-05-08: Riesel Prime 415267·23771929-1 found by A.Tarasov, PrimeGrid
2011-05-08: Riesel Prime 123547·23804809-1 found by J.Luszczek, PrimeGrid
2011-04-05: Riesel Prime 65531·23629342-1 found by A.Schori, PrimeGrid
2011-01-14: Riesel Prime 428639·23506452-1 found by B.Melvold, PrimeGrid
2010-11-21: Riesel Prime 191249·23417696-1 found by J.Pritchard, PrimeGrid
2008-07-14: Error for k=103811 (n=111043 was given instead of 114034) found by W.Siemelink.
2008-06-24: Riesel Prime 485767·23609357-1 found by C.Cardall, RieselSieve
2008-05-01: Riesel Prime 113983·23201175-1 found I.Keogh, RieselSieve

Special thanks to W.Keller for his data and corrections. See also his page here.
The PrimeGrid Status page for their current search can be found here.

Definition :

Theorem: There exist infinitely many odd integers k such that k · 2n-1 is composite for every n ≥ 1.

Hans Riesel proved this in 1956 and showed that k0 = 509203 has got this property and also all multipliers kn = k0 + 11184810 · n (n ≥ 1).
Such numbers are called Riesel numbers. The Riesel problem is finding the smallest Riesel number.

Conjecture: k = 509203 is the smallest Riesel number.

To prove this conjecture, for every k < 509203 a prime k · 2n-1 must be found. It's sufficient to find the first exponent n giving a prime.
So the search is separated in stages fm where the first exponent giving a prime is in the interval 2mn < 2m+1.

Data :

49 remaining k's with no prime for n < 8.95M

k-values
2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231, 215443, 226153, 234343, 245561, 250027, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 485557, 494743


Number of k's prime for first prime in the interval 2mn < 2m+1. (green: all these k's are listed in the summary pages)

m 2m 2m+1 # k's contributors(primes found) Date completed
(last prime found)
0 1 2 39867 W.Keller 1992
1 2 4 59460 W.Keller 1992
2 4 8 62311 W.Keller 1992
3 8 16 45177 W.Keller 1992
4 16 32 24478 W.Keller 1992
5 32 64 11668 W.Keller 1992
6 64 128 5360 W.Keller 1992
7 128 256 2728 W.Keller 1992
8 256 512 1337 W.Keller 1992
9 512 1024 785 W.Keller 1992
10 1024 2048 467 W.Keller 1992
11 2048 4096 289 Y.Gallot 1998
12 4096 8192 191 Y.Gallot 1998
13 8192 16384 125 Y.Gallot 1998-05-11
14 16384 32768 87 R.Ballinger(21), W.Keller(25), S.Key(41) 1998-11-14
15 32768 65536 62 R.Ballinger(5), K.J.Brazier(1), C.Caldwell(2), W.Keller(13), S.Key(22), T.Kuechler(1), D.W.Linton(18) 1999-04-09
16 65536 131072 38 R.Ballinger(2), Gallot(1), W.Keller(4), S.Key(5), D.W.Linton(25), H.Zeisel(1) 1999-10-22
17 131072 262144 35 A.Aitsen(1), R.Ballinger(2), L.Baxter(1), Y.Gallot(1), O.Haeberle(1), R.A.A.Heylen(1), D.W.Linton(25), P.Pirson(1), J.Szmidt(1), H.Zeisel(1) 2001-07-13
18 262144 524288 25 D.Andrews(1), R.Ballinger(4), K.Davis(1), O.Haeberle(1), R.A.A.Heylen(2), R.Keiser(1), T.Kuechler(1), N.Kuosa(1), D.W.Linton(6), P.Pirson(1), M.Rodenkirch(1), L.Schmid(1), J.Szmidt(2), J.Wolfe(1), H.Zeisel(1) 2003-12-04
19 524288 1048576 22 O.Haeberle(10), R.Ballinger(1), R.A.A.Heylen(1), D.W.Linton(1), L.Schmid(1), RieselSieve(7), D.Domanov(1) 2012-02-02
20 1048576 2097152 18 D.W.Linton(1), R.Ballinger(1), RieselSieve(16) 2007-10-28
21 2097152 4194304 13 RieselSieve(8), PrimeGrid(5) 2011-05-08
22 4194304 8388608 8 PrimeGrid(8) 2014-10-04
23 >8388608 Infinity 1 (49 remain) PrimeGrid(1) (see PrimeGrid at n = 8.95M) 2017-12-13


f(13) = 125 where k·2n-1 prime for 8192 ≤ n < 16384

kn kn  kn kn  kn kn  kn kn
868184581345110562160338547195079713 24959897629819130523676112018435439419
44669856046439150884690193465022711893 50729147885080189705277783335875311955
5947310187642131383965519111487623713085 859331438386437893394439124249458913436
963679409977239447108817942911515110930 1228798812126389155761322171528113642113534
1391838419156101107981579571606516492113258 1654911448616648316243168907922517512113402
18352315387186059149321925811100619452711573 19481915256195875935020439786732057818334
207311899820964785612123211383821355312771 2174991124422082915960220931893022568910800
2285099980236893147512376591585623988713473 2419871127724556310319246731120782475979917
24804711613250091156902535071083326026116202 26366998642664598852282395112182834819394
288943922729070784572914631079129364711225 2953031171129990988283000891516030126712493
3036891091630537711457306637102733076318254 3108431077531286916116317969143003228778328
3255711061032604788013353531459134596710269 348037911335212314995353375938235569310203
3631199712363359978836407990523691639099 373573916737509712421379693965540009312815
40196914732414373107034155591144441793714725 4202399488424631131664304391560043409910420
43526916060437009101964491431334745721312839 459701870646396197944715471514148271115046
489367113934910179141501209100085029799044 50761315019


f(14) = 87 where k·2n-1 prime for 16384 ≤ n < 32768

kn kn  kn kn  kn kn  kn kn
121125242103913191410451192461434725997 2288916692248392043625825269613463125390
6346317219638772140969059313446930132437 7927321107859192851690595216439541128454
9791920872114223224631159151638912570719021 12911919584131227304411313211691014261918716
14815125790149467229491649811780616970918856 17160721117177073261471801331987918403123906
19097923244194563243432078392914021865130314 22744124590228071276622300172004523322716517
23637719693244841178902623911976627871317159 28189129950300611211943020471973730674918916
31377716713315433231833184631770732050326627 32357930324323737180013286872535732941316947
34307922092347201275743501732552335061731493 35399916932359923224633608171828536754317831
36846729221370991185223723112897437630318335 38479122598387223209513916791743239767927540
40353727505406423181554108033189541972919632 43510120382439811202904473672214945019323059
45695920016462967247574839071808948424122158 486677279105056491864450897917088


f(15) = 62 where k·2n-1 prime for 32768 ≤ n < 65536

kn kn  kn kn  kn kn  kn kn
381740381168295772825079346603356952512 4410765173573114049857359625006438740249
81313646198298749489868334474710454939744 10706943280111883544151165315978213321134342
13795133094140921332341527294834816478948268 17537937676177479410322092274348121371954996
22051154890233833329832545874295326440335147 27807756913288907604852894093744429758162982
30038934768300637601093083514532631420338267 31843140618320531463183383214953834144342575
34805934660353557518333582434070738119343627 38222939004385627342294018793986440452737265
40625340948410489475964234033469142449934168 43117363643438071559864534334972545358158266
46186161762465089338684683115997847883755081 4878114247849764759825


f(16) = 38 where k·2n-1 prime for 65536 ≤ n < 131072

kn kn  kn kn  kn kn  kn
30689785604198372347487031094157709969356 83323830799556176754103811114034
12443994176124663689391316236909913809786401 1501031113911629437431917006996828
179743997311829391271802179639511122489192214 2455338466727537789937296321101594
3011517832630211196282332201103498358889122900 3627071199253643319262639231774281
392923708273992816779840442985344420067125733 44484711249746207910518746490973740
46763974496477311105214483479115376


f(17) = 35 where k·2n-1 prime for 131072 ≤ n < 262144

kn kn  kn kn  kn kn  kn
11519164444144591711442522923865237837180873 81517258321105569235200105697223233
107167159161111253165379111763155551130297136645 132071202098132599206032144817258857
159821168770178747144789185767149009190229141576 217807243537256267148941281143187639
285191201138307211241978321043238303325859156148 331139201240370421201442392737248517
393209221216408247205469438523135415466783245839 471127157629485773216487499031139894


f(18) = 25 where k·2n-1 prime for 262144 ≤ n < 524288

primes
27253·2272347-1 39269·2287048-1 42779·2322908-1 43541·2507098-1 46271·2428210-1 104917·2340181-1
130139·2280296-1 144643·2498079-1 148901·2360338-1 159371·2284166-1 189463·2324103-1 201193·2457615-1
220063·2306335-1 235601·2295338-1 245051·2285750-1 267763·2264115-1 277153·2429819-1 299617·2428917-1
376993·2293603-1 382691·2431722-1 398533·2419107-1 401617·2470149-1 416413·2424791-1 443857·2369457-1
465869·2497596-1


f(19) = 22 where k·2n-1 prime for 524288 ≤ n < 1048576

primes
659·2800516-1 89707·2578313-1 93997·2864401-1 98939·2575144-1 103259·2615076-1 109897·2630221-1
126667·2626497-1 162941·2993718-1 170591·2866870-1 204223·2696891-1 212893·2730387-1 215503·2649891-1
220033·2719731-1 222997·2613153-1 246299·2752600-1 261221·2689422-1 279703·2616235-1 309817·2901173-1
357491·2609338-1 401143·2532927-1 458743·2547791-1 460139·2779536-1


f(20) = 18 where k·2n-1 prime for 1048576 < n < 2097152

primes
71009·21185112-1 110413·21591999-1 149797·21414137-1 150847·21076441-1 152713·21154707-1 192089·21395688-1
234847·21535589-1 325627·21472117-1 345067·21876573-1 350107·21144101-1 357659·21779748-1 412717·21084409-1
417643·21800787-1 467917·21993429-1 469949·21649228-1 500621·21138518-1 502541·21199930-1 504613·21136459-1


f(21) = 13 where k·2n-1 prime for 2097152 ≤ n < 4194304

primes
26773·22465343-1 65531·23629342-1 113983·23201175-1 114487·22198389-1 123547·23804809-1 191249·23417696-1
196597·22178109-1 275293·22335007-1 342673·22639439-1 415267·23771929-1 428639·23506452-1 450457·22307905-1
485767·23609357-1


f(22) = 8 where k·2n-1 prime for 4194304 ≤ n < 8388608

primes
141941·24299438-1 252191·25497878-1 353159·24331116-1 398023·26418059-1 304207·26643565-1 40597·26808509-1
402539·27173024-1 502573·27181987-1


f(23) ≥ 1 where k·2n-1 prime for 8388608 ≤ n < 16777216

primes
273809·28932416-1