The 2nd Riesel problem involves determining the smallest Riesel numbers k•2n-1 for 509203 < k < 762701, the first and second Riesel k-values without any possible primes.
: completely included in Prime-Wiki
m |
nmin |
nmax |
remain |
current |
target
|
0 |
1 |
1 |
126,748 |
17 |
18,050
|
1 |
2 |
3 |
108,698 |
26 |
27,596
|
2 |
4 |
7 |
81,102 |
36 |
30,503
|
3 |
8 |
15 |
50,599 |
45 |
23,785
|
4 |
16 |
31 |
26,814 |
17 |
13,631
|
5 |
32 |
63 |
13,183 |
2 |
6,613
|
6 |
64 |
127 |
6,570 |
1 |
3,108
|
7 |
128 |
255 |
3,462 |
0 |
1,485
|
8 |
256 |
511 |
1,977 |
0 |
774
|
9 |
512 |
1,023 |
1,203 |
1 |
422
|
10 |
1,024 |
2,047 |
781 |
0 |
228
|
11 |
2,048 |
4,095 |
553 |
0 |
172
|
12 |
4,096 |
8,191 |
381 |
110 |
110
|
13 |
8,192 |
16,383 |
271 |
66 |
66
|
14 |
16,384 |
32,767 |
205 |
68 |
68
|
15 |
32,768 |
65,535 |
137 |
29 |
29
|
16 |
65,536 |
131,071 |
108 |
26 |
26
|
17 |
131,072 |
262,143 |
82 |
13 |
13
|
18 |
262,144 |
524,287 |
69 |
16 |
16
|
19 |
524,288 |
1,048,575 |
53 |
11 |
11
|
20 |
1,048,576 |
2,097,151 |
42 |
8 |
8
|
21 |
2,097,152 |
4,194,303 |
34 |
6 |
≥ 6
|
22 |
4,194,304 |
8,388,607 |
? |
6 |
≥ 6
|
23 |
8,388,608 |
16,777,215 |
? |
0 |
≥ 0
|
unknown |
16,777,216 |
∞ |
-1 |
0 |
-1
|
The current nmax = 8,000,000 as of 2024-03-31.