Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Generalized Fermat number"

From Prime-Wiki
Jump to: navigation, search
(navbox)
(update link to Factors of generalized Fermat numbers found after Björn & Riesel)
Line 28: Line 28:
 
*[[Wikipedia:Fermat_number#Generalized_Fermat_numbers|Generalized Fermat numbers]]
 
*[[Wikipedia:Fermat_number#Generalized_Fermat_numbers|Generalized Fermat numbers]]
 
*[http://www.alpertron.com.ar/MODFERM.HTM Factorization of numbers of the form F<sub>n,2</sub>]: it includes a program to factor generalized Fermat numbers.
 
*[http://www.alpertron.com.ar/MODFERM.HTM Factorization of numbers of the form F<sub>n,2</sub>]: it includes a program to factor generalized Fermat numbers.
*<s><nowiki>http://www1.uni-hamburg.de/RRZ/W.Keller/GFNfacs.html</nowiki></s> Factors of generalized Fermat numbers found after Björn & Riesel] (not available anymore)
+
*[http://prothsearch.com/GFNfacs.html Factors of generalized Fermat numbers found after Björn & Riesel]
 
*[http://members.cox.net/jfoug/GFNFacts_Riesel.html Factors of generalized Fermat numbers found after Björn & Riesel (original)]
 
*[http://members.cox.net/jfoug/GFNFacts_Riesel.html Factors of generalized Fermat numbers found after Björn & Riesel (original)]
 
*[http://mathworld.wolfram.com/GeneralizedFermatNumber.html MathWorld article]
 
*[http://mathworld.wolfram.com/GeneralizedFermatNumber.html MathWorld article]

Revision as of 21:54, 9 August 2021

There are different kinds of generalized Fermat numbers.

John Cosgrave

John Cosgrave has studied the following numbers:

Numbers of the form: [math]\displaystyle{ F_{n,r} = \sum_{i=0}^{p-1} \ 2^{i p^{n}} \ = \ 2^{(p-1)p^n}+2^{(p-2)p^n}+...+2^{2p^n}+2^{p^n}+1 \ = \ (2^{p^{n+1}}-1)/(2^{p^n}-1) }[/math] where p is the prime of apparition rank r (r(2)=1, r(3)=2, r(5)=3, ...) and n is greater or equal to 0.

[math]\displaystyle{ F_{0,r} }[/math] generates the Mersenne numbers.
[math]\displaystyle{ F_{n,1} }[/math] generates the Fermat numbers.
[math]\displaystyle{ F_{n,2} }[/math] generates the Saouter numbers.

Cosgrave has proven the following properties:

  1. If number [math]\displaystyle{ \sum_{i=0}^{p-1}\ (2^i)^{m} \ }[/math] is prime, then [math]\displaystyle{ m=p^n }[/math].
  2. [math]\displaystyle{ F_{n,r} }[/math] numbers are pairwise relatively prime within a rank and across ranks: [math]\displaystyle{ gcd(F_{n,i},F_{m,j}) =1 }[/math] for all n, m, i and j.
  3. They satisfy a product property like Fermat numbers have. And every [math]\displaystyle{ F_{n,r} }[/math] passes Fermat's test to base 2.

Saouter has proven that [math]\displaystyle{ F_{n,2} }[/math] numbers can be proven prime by using Pépin's test with k=5.

Dubner

In 1985, Dubner for the first time built a list of large primes of the form: b2m+1, b ≥ 2 and m ≥ 1.

See also: H.Dubner, W.Keller: "Factors of generalized Fermat numbers" (1995)[1]

Björn & Riesel

In 1998, Björn & Riesel[2] for the first time built a list of large primes of the form: a2m+b2m, b > a ≥ 2 and m ≥ 1.

External links

References

Generalized Fermat numbers
Miscellaneous
Fermat numbers
Gen. Fermat primes
Gen. Fermat primes
Gen. Fermat primes
categories
GF Divisors