Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
 Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

# Help:Examples

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Some examples and tests for the Wiki-extensions.

Examples in math (LaTeX) notation
$N \supset \mathbb P = \{ p_n \mid n \in N \}$
$\displaystyle{ N \supset \mathbb P = \{ p_n \mid n \in N \} }$
$\sideset{_1^2}{_3^4}\prod_a^b$
$\displaystyle{ \sideset{_1^2}{_3^4}\prod_a^b }$
$\iiiint\limits_{F} \, dx\,dy\,dz\,dt$
$\displaystyle{ \iiiint\limits_{F} \, dx\,dy\,dz\,dt }$
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
$\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }$
$\sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty$
$\displaystyle{ \sum_{i=1}^\infty \frac{1}{p_i} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dotsb = \infty }$
$\pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498$
$\displaystyle{ \pi(1)=0\ ;\ \pi(10) = 4\ ;\ \pi(100) = 25\ ;\ \pi(1000) = 168; \ \pi(1000000)=78498 }$
Example of page categorizations
!TopLevel(19 C)
User de(2 C, 2 P)
User de-1(1 P)
no subcategories
User de-N(1 P)
no subcategories
User en(4 C, 7 P)
User en-1(empty)
no subcategories
User en-3(2 P)
no subcategories
User en-5(2 P)
no subcategories
User en-N(3 P)
no subcategories
User eo(1 C, 1 P)
User eo-1(1 P)
no subcategories
User es(1 C, 2 P)
User es-1(2 P)
no subcategories
User fr(1 C, 2 P)
User fr-1(2 P)
no subcategories
User ru(1 C, 2 P)
User ru-N(2 P)
no subcategories
User uk(1 C, 1 P)
User uk-N(1 P)
no subcategories
User zh(1 C, 1 P)
User zh-1(1 P)
no subcategories
Files(6 C, 1 F)
CSV(39 F)
no subcategories
Images(1 F)
no subcategories
PDF(3 F)
no subcategories
Sieves(38 F)
no subcategories
SVG(1 F)
no subcategories
Wiki Images(10 F)
no subcategories
Frequently asked questions(4 C, 3 P)
General FAQ(1 P)
no subcategories
Hardware FAQ(1 P)
no subcategories
Math FAQ(empty)
no subcategories
Project FAQ(1 P)
no subcategories
Hardware(22 P)
no subcategories
Help(18 P)
no subcategories
Maintenance(4 C, 1 P)
DeleteMe(2 P, 8 F)
no subcategories
Missing XCount(empty)
no subcategories
no subcategories
Wrong XCount(empty)
no subcategories
Math(7 C, 40 P)
Algorithms(2 C, 3 P)
Error checking(3 P)
no subcategories
Primality tests(3 C, 2 P)
no subcategories
no subcategories
no subcategories
Conjectures(1 C, 2 P)
Riesel prime conjectures(5 C, 6 P)
Riesel problem 1(44 P)
no subcategories
Riesel problem 2(24 P)
no subcategories
Riesel problem 3(4 P)
no subcategories
Riesel problem 4(2 P)
no subcategories
Riesel problem real 1(23 P)
no subcategories
Factorization(1 C, 15 P)
Factoring program(7 P)
no subcategories
Functions(1 C, 4 P)
Operations(1 C, 5 P)
Multiplication(3 P)
no subcategories
Geometry(4 P)
no subcategories
Number systems(6 P)
no subcategories
Theorems(1 P)
no subcategories
Number(7 C, 23 P)
Aliquot sequence(2 P)
no subcategories
Generalized Fermat number(12 C, 3 P)
GF Divisors(1,430 P)
no subcategories
Generalized Repunit(3 P)
no subcategories
no subcategories
Long number(15 P)
no subcategories
Number systems(6 P)
no subcategories
Prime(9 C, 11 P)
Carol-Kynea prime(4 C, 386 P)
Carol-Kynea power-of(22 P)
no subcategories
no subcategories
no subcategories
no subcategories
Cullen prime(3 C, 141 P)
Cullen prime without(27 P)
no subcategories
Cullen prime M(1 P)
no subcategories
Cullen prime P(1 P)
no subcategories
Leyland prime(2 C, 1 P)
Leyland prime M(2 C, 1 P)
Leyland prime M PRP(empty)
Leyland prime P(2 C, 1,816 P)
Leyland prime P proven(307 P)
Leyland prime P PRP(1,507 P)
Mersenne prime(53 P)
no subcategories
Proth prime(12 C, 3 P)
Proth 2(23 C, 197 P)
Proth 2 1-300(42 P)
Proth 2 300-2000(51 P)
Proth 2 2000-4000(11 P)
Proth 2 4000-6000(8 P)
Proth 2 6000-8000(6 P)
Proth 2 8000-10000(6 P)
Proth 2 10e4-10e5(47 P)
Proth 2 10e5-10e6(19 P)
Proth 2 10e6-10e7(6 P)
Proth 2 10e7-10e8(2 P)
Proth 2 10e8-10e9(3 P)
Proth 2 10e9-10e10(2 P)
Proth 2 3k-value(90 P)
Proth 2 15k-value(22 P)
Proth 2 2145k-value(2 P)
Proth 2 2805k-value(1 P)
Proth 2 Count-0(13 P)
Proth 2 Count-100(8 P)
Proth 2 Intervals(9 C)
Proth 2 Low-weight(63 P)
Proth 2 Missing-range(40 P)
Proth 2 Sierpinski(12 P)
Proth 3(1 C, 17 P)
Proth 3 Missing-range(12 P)
Proth 4(3 C, 13 P)
Proth 4 Count-0(4 P)
Proth 4 Low-weight(10 P)
Proth 4 Sierpinski(5 P)
Proth 5(3 C, 36 P)
Proth 5 Count-0(29 P)
Proth 5 Low-weight(33 P)
Proth 6(2 P)
no subcategories
Proth 7(1 C, 2 P)
Proth 10(1 C, 1 P)
Proth 11(1 P)
no subcategories
Proth 999(1 P)
no subcategories
Proth Count-0(3 C)
Proth 2 Count-0(13 P)
Proth 4 Count-0(4 P)
Proth 5 Count-0(29 P)
Proth Low-weight(3 C)
Proth 2 Low-weight(63 P)
Proth 4 Low-weight(10 P)
Proth 5 Low-weight(33 P)
Proth Missing-range(5 C)
Proth 2 Missing-range(40 P)
Proth 3 Missing-range(12 P)
Riesel prime(16 C, 2 P)
Riesel 2(30 C, 3,918 P)
Riesel 2 1-300(151 P)
Riesel 2 300-2000(415 P)
Riesel 2 2000-4000(81 P)
Riesel 2 4000-6000(129 P)
Riesel 2 6000-8000(25 P)
Riesel 2 8000-10000(21 P)
Riesel 2 10e4-10e5(1,150 P)
Riesel 2 10e5-10e6(1,758 P)
Riesel 2 10e6-10e7(90 P)
Riesel 2 10e7-10e8(39 P)
Riesel 2 10e8-10e9(19 P)
Riesel 2 10e9-10e10(7 P)
Riesel 2 3k-value(1,181 P)
Riesel 2 15k-value(447 P)
Riesel 2 2145k-value(40 P)
Riesel 2 2805k-value(26 P)
Riesel 2 Count-0(101 P)
Riesel 2 Count-100(24 P)
Riesel 2 Intervals(4 C)
Riesel 2 Low-weight(2,219 P)
Riesel 2 Missing-range(450 P)
Riesel 2 no-SG(435 P)
Riesel 2 no-twin(308 P)
Riesel 2 Riesel(42 P)
Riesel problem 1(44 P)
Riesel problem 2(24 P)
Riesel problem 3(4 P)
Riesel problem 4(2 P)
Riesel problem real 1(23 P)
Riesel 3(1 C, 4 P)
Riesel 4(3 C, 18 P)
Riesel 4 Count-0(7 P)
Riesel 4 Low-weight(16 P)
Riesel 4 Riesel(4 P)
Riesel 5(3 C, 66 P)
Riesel 5 Count-0(53 P)
Riesel 5 Low-weight(64 P)
Riesel 7(1 P)
no subcategories
Riesel 10(1 C, 9 P)
Riesel 16(2 C, 4 P)
Riesel 16 Count-0(3 P)
Riesel 128(2 C, 1 P)
Riesel 128 Count-0(1 P)
Riesel 263(1 C, 1 P)
Riesel 263 Count-0(1 P)
Riesel 284(1 P)
no subcategories
Riesel 1024(2 C, 2 P)
Riesel 1024 Count-0(2 P)
Riesel Count-0(7 C)
Riesel 2 Count-0(101 P)
Riesel 4 Count-0(7 P)
Riesel 5 Count-0(53 P)
Riesel 16 Count-0(3 P)
Riesel 128 Count-0(1 P)
Riesel 263 Count-0(1 P)
Riesel 1024 Count-0(2 P)
Riesel Low-weight(6 C)
Riesel 2 Low-weight(2,219 P)
Riesel 4 Low-weight(16 P)
Riesel 5 Low-weight(64 P)
Riesel prime const(4 P)
no subcategories
no subcategories
Twin prime(2 P)
no subcategories
Williams prime(4 C, 1 P)
Williams prime MM(1 C, 172 P)
Williams prime MP(1 C, 157 P)
Williams prime PM(1 C, 90 P)
Williams prime PP(1 C, 85 P)
Woodall prime(3 C, 778 P)
Woodall prime without(12 P)
no subcategories
Woodall prime M(1 C, 5 P)
Woodall prime P(1 C, 4 P)
Organizations(1 C, 4 P)
Universities(4 P)
no subcategories
Person(186 P)
no subcategories
Project(6 C, 3 P)
Cunningham project(5 P)
no subcategories
Conjectures 'R Us(4 C, 1 P)
CRUS Even Riesel(3 P)
no subcategories
no subcategories
Riesel problem 2(24 P)
no subcategories
no subcategories
no subcategories
No Prime Left Behind(5 C, 27 P)
NPLB Drive 17(100 P)
no subcategories
NPLB Drive 18(202 P)
no subcategories
NPLB Drive 19(44 P)
no subcategories
NPLB Drive High-n(6 P)
no subcategories
NPLB K300 Drive 1(68 P)
no subcategories
PrimeGrid(13 C, 5 P)
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
no subcategories
Riesel Prime Search(1 C, 18 P)
RPS Megabit Drive 1(11 P)
no subcategories
Twin Prime Search(6 P)
no subcategories
GIMPS FAQ(7 P)
no subcategories
Home Prime Search(3 P)
no subcategories
Seventeen or Bust(6 P)
no subcategories
Woodall fill-in(13 P)
no subcategories
Reserved(2 C, 122 P)
Multi Reservation(27 P)
no subcategories
ReservedM(665 P)
no subcategories
Shortcut(19 P)
no subcategories
Software(7 C, 37 P)
Code snippets(4 P)
no subcategories
Error checking(3 P)
no subcategories
Factoring program(7 P)
no subcategories
no subcategories
Prime95(3 P)
no subcategories
Sieving program(6 P)
no subcategories
Tools(2 P)
no subcategories
Spelling(3 P)
no subcategories
System(5 C, 18 P)
Hidden categories(5 C)
no subcategories
Last updated(8 P)
no subcategories
Missing XCount(empty)
no subcategories
no subcategories
Wrong XCount(empty)
no subcategories
no subcategories
Pages with graphs(1 P)
no subcategories
Stub(78 P)
no subcategories
Test pages(4 P)
no subcategories
Teams(1 P)
no subcategories
Templates(4 C, 73 P)
Infoboxes(6 P)
no subcategories
Multilanguage(11 P)
no subcategories
Navboxes(16 P)
no subcategories
Prime collections(43 P)
no subcategories
Websites(10 P)
no subcategories
Example of prime sequence and reservation
Configuration tests: external links open in new browser tab/window
Examples of template usage and data table generating

The category for Carol/Kynea primes holds example pages for some bases.

These pages hold their data in the template Carol-Kynea prime using named parameters.

The parameters can be used to create automatically a table of those pages.
Examples for including PDF documents

• Show document starting at page 3 and different sizings:
Example for fetching data from RieselPrime database

The data are collected from the internal SQL database by Extension:External Data:

• table: RieselPrime
• field: rieselk_id = 4 (-> "1" = Mersenne primes)
• fields collected: n, comment, utm (prime index n, comment like "Woodall", utm: id of Top5000 page)

Functioning but still complicated: no parser/string functions allowed in "#for_external_table" statement, therefore using variables.

Mersenne primes $\displaystyle{ 2^n-1 }$, prime for n:

2*, 3, 5*, 7*, 13, 17, 19*, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161,
Examples for showing images of external pages

Images from external sources have to be put as full link on a page.

## Image from Wikipedia

Images can only be diplayed in available sizes, no resize possible.

Example for SVG support

Test file, original size 580x400 pixel:

Test file,size 80 pixel in width:

Clicking on the image will lead to the saved file.
Examples for graphs from CSV file

Display with parser function:

Display with image handler:

Examples for graphs extension

Using template PieChart:

Using <graph>-tag directly:

Some other demo graphs are shown here.
Help
 Tools
 General Info