Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Williams prime"

From Prime-Wiki
Jump to: navigation, search
m
m (generalization)
Line 1: Line 1:
 
==Definition==
 
==Definition==
A '''Williams number''' is a [[natural number]] of the form ''(b-1)&times; b<sup>n</sup>-1'' for integers ''b &ge; 2'' and ''n > 1.
+
A '''Williams number''' is a [[natural number]] of the form {{Kbn|(b-1)|b|n}} for integers ''b &ge; 2'' and ''n &ge; 1.
  
 
A '''Williams prime''' is a Williams number which is [[prime]].
 
A '''Williams prime''' is a Williams number which is [[prime]].
 +
 +
==Generalization==
 +
Varying both signs, there're four different types of Williams primes:
 +
*[[:Category:Williams prime MM|Type {{Kbn|(b-1)|b|n}}]]
 +
*[[:Category:Williams prime MP|Type {{Kbn|+|(b-1)|b|n}}]]
 +
*[[:Category:Williams prime PM|Type {{Kbn|(b+1)|b|n}}]]
 +
*[[:Category:Williams prime PP|Type {{Kbn|+|(b+1)|b|n}}]]
  
 
==External links==
 
==External links==
 
*H. C. Williams: [http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf "The primality of certain integers of the form 2Ar^n-1"], Acta Arith. 39 (1981), 7-17.
 
*H. C. Williams: [http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf "The primality of certain integers of the form 2Ar^n-1"], Acta Arith. 39 (1981), 7-17.
 +
*[http://harvey563.tripod.com/wills.txt Search for original Williams primes] maintaind by Steven Harvey
 
*[[Wikipedia:Williams number|Williams number]]
 
*[[Wikipedia:Williams number|Williams number]]
*[http://harvey563.tripod.com/wills.txt Search maintaind by Steven Harvey]
 
 
{{Navbox NumberClasses}}
 
{{Navbox NumberClasses}}
 
[[Category:Williams prime| ]]
 
[[Category:Williams prime| ]]

Revision as of 17:27, 14 April 2019

Definition

A Williams number is a natural number of the form (b-1)bn-1 for integers b ≥ 2 and n ≥ 1.

A Williams prime is a Williams number which is prime.

Generalization

Varying both signs, there're four different types of Williams primes:

External links

Number classes
General numbers
Special numbers
Prime numbers