Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "CRUS Liskovets-Gallot"
(Add prime to history) |
(Adding lead and cleaning up notation) |
||
Line 1: | Line 1: | ||
{{Stub}} | {{Stub}} | ||
+ | '''CRUS Liskovets-Gallot''' is a [[Conjectures 'R Us]] (CRUS) subproject aiming to prove the [[Liskovets-Gallot conjectures]], which relate to the smallest [[Riesel prime|Riesel]] and [[Proth prime|Proth]] {{Vk}}-values, divisible by 3, with no primes for {{Vn}}-values of a given parity. | ||
+ | |||
==Explanations== | ==Explanations== | ||
− | + | :''Main article: [[Liskovets-Gallot conjectures]]'' | |
==Status== | ==Status== | ||
===Riesel values=== | ===Riesel values=== | ||
− | *[[Riesel prime 2 9519| | + | *[[Riesel prime 2 9519|{{Vk}}=9519, even {{Vn}}]], done to {{Vn}}=16777216, even {{Vn}}, not reserved |
− | *[[Riesel prime 2 14361| | + | *[[Riesel prime 2 14361|{{Vk}}=14361, even {{Vn}}]] |
− | *[[Riesel prime 2 39687| | + | *[[Riesel prime 2 39687|{{Vk}}=39687, odd {{Vn}}]] |
− | *[[Riesel prime 2 103947| | + | *[[Riesel prime 2 103947|{{Vk}}=103947, odd {{Vn}}]] |
− | *[[Riesel prime 2 154317| | + | *[[Riesel prime 2 154317|{{Vk}}=154317, odd {{Vn}}]] |
− | *[[Riesel prime 2 163503| | + | *[[Riesel prime 2 163503|{{Vk}}=163503, odd {{Vn}}]] |
===Proth values=== | ===Proth values=== | ||
− | *[[Proth prime 2 9267| | + | *[[Proth prime 2 9267|{{Vk}}=9267, odd {{Vn}}]], reserved by [[Jean Penné]] |
− | *[[Proth prime 2 32247| | + | *[[Proth prime 2 32247|{{Vk}}=32247, odd {{Vn}}]] |
− | *[[Proth prime 2 53133| | + | *[[Proth prime 2 53133|{{Vk}}=53133, odd {{Vn}}]] |
==History== | ==History== |
Revision as of 15:48, 9 January 2022
This article is only a stub. You can help PrimeWiki by expanding it. |
CRUS Liskovets-Gallot is a Conjectures 'R Us (CRUS) subproject aiming to prove the Liskovets-Gallot conjectures, which relate to the smallest Riesel and Proth k-values, divisible by 3, with no primes for n-values of a given parity.
Explanations
- Main article: Liskovets-Gallot conjectures
Status
Riesel values
- k=9519, even n, done to n=16777216, even n, not reserved
- k=14361, even n
- k=39687, odd n
- k=103947, odd n
- k=154317, odd n
- k=163503, odd n
Proth values
- k=9267, odd n, reserved by Jean Penné
- k=32247, odd n
- k=53133, odd n
History
- 2015-06-13: Found Riesel 19401•23086450-1, Gary Barnes
- 2011-07-29: Found Riesel 148323•21973319-1, Max Dettweiler
- 2008-12-03: Found Riesel 30003•2613463-1, Karsten Bonath
- 2008-05-22: Found Riesel 6927•2743481-1, Gary Barnes