Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Law of quadratic reciprocity"
(restored) |
(Moving to new subcategory) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | The '''law of quadratic reciprocity''' predicts whether an odd [[prime | + | The '''law of quadratic reciprocity''' predicts whether an odd [[prime]] number <math>p</math> is a [[quadratic residue]] or non-residue modulo another odd prime number <math>q</math> if we know whether <math>q</math> is a quadratic residue or non-residue modulo <math>p</math>. |
*If at least one of <math>p</math> or <math>q</math> are congruent to 1 mod 4: <math>p</math> is a quadratic residue modulo <math>q</math> if and only if <math>q</math> is a quadratic residue modulo <math>p</math>. | *If at least one of <math>p</math> or <math>q</math> are congruent to 1 mod 4: <math>p</math> is a quadratic residue modulo <math>q</math> if and only if <math>q</math> is a quadratic residue modulo <math>p</math>. | ||
*If both of <math>p</math> or <math>q</math> are congruent to 3 mod 4: <math>p</math> is a quadratic residue modulo <math>q</math> if and only if <math>q</math> is a quadratic non-residue modulo <math>p</math>. | *If both of <math>p</math> or <math>q</math> are congruent to 3 mod 4: <math>p</math> is a quadratic residue modulo <math>q</math> if and only if <math>q</math> is a quadratic non-residue modulo <math>p</math>. | ||
− | This theorem was first proved by Carl Friedrich Gauss in 1801. | + | This theorem was first proved by [[Carl Friedrich Gauss]] in 1801. |
This does not cover the cases where we want to know whether -1 or 2 are quadratic residues or non-residues modulo <math>p</math>. | This does not cover the cases where we want to know whether -1 or 2 are quadratic residues or non-residues modulo <math>p</math>. | ||
Line 12: | Line 12: | ||
==External links== | ==External links== | ||
− | *[ | + | *[[Wikipedia:Quadratic_reciprocity|Wikipedia]] |
− | [[Category: | + | [[Category:Theorems]] |
Latest revision as of 18:19, 2 October 2022
The law of quadratic reciprocity predicts whether an odd prime number [math]\displaystyle{ p }[/math] is a quadratic residue or non-residue modulo another odd prime number [math]\displaystyle{ q }[/math] if we know whether [math]\displaystyle{ q }[/math] is a quadratic residue or non-residue modulo [math]\displaystyle{ p }[/math].
- If at least one of [math]\displaystyle{ p }[/math] or [math]\displaystyle{ q }[/math] are congruent to 1 mod 4: [math]\displaystyle{ p }[/math] is a quadratic residue modulo [math]\displaystyle{ q }[/math] if and only if [math]\displaystyle{ q }[/math] is a quadratic residue modulo [math]\displaystyle{ p }[/math].
- If both of [math]\displaystyle{ p }[/math] or [math]\displaystyle{ q }[/math] are congruent to 3 mod 4: [math]\displaystyle{ p }[/math] is a quadratic residue modulo [math]\displaystyle{ q }[/math] if and only if [math]\displaystyle{ q }[/math] is a quadratic non-residue modulo [math]\displaystyle{ p }[/math].
This theorem was first proved by Carl Friedrich Gauss in 1801.
This does not cover the cases where we want to know whether -1 or 2 are quadratic residues or non-residues modulo [math]\displaystyle{ p }[/math].
- 2 is a quadratic residue modulo [math]\displaystyle{ p }[/math] if and only if [math]\displaystyle{ p }[/math] is congruent to 1 or 7 (mod 8).
- -1 is a quadratic residue modulo [math]\displaystyle{ p }[/math] if and only if [math]\displaystyle{ p }[/math] is congruent to 1 (mod 4).