Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Leyland number"
(new (to do: add history, make own category for this number)) |
(added info) |
||
Line 1: | Line 1: | ||
− | A '''Leyland number''' is a number that can be expressed in the form <math>x^y+y^x</math>, where x and y are positive integers. These numbers are named after [[Paul Leyland]], who first studied these numbers. | + | A '''Leyland number''' is a number that can be expressed in the form <math>x^y+y^x</math>, where x and y are positive integers with the condition 1 < x ≤ y. These numbers are named after [[Paul Leyland]], who first studied these numbers in 1994. |
− | The first few nontrivial Leyland numbers are given by OEIS sequence [ | + | The first few nontrivial Leyland numbers are given by OEIS sequence {{OEIS|A076980}}. |
+ | |||
+ | A '''Leyland prime''' is a Leyland number which is also a [[prime]] (see {{OEIS|l|A094133}}). | ||
+ | |||
+ | The second kind of numbers are of the form <math>x^y-y^x</math>. | ||
==History== | ==History== | ||
− | == | + | ==Data== |
− | [[:Category:Leyland prime P]] | + | The data tables contains for every number the x and y values, the number of digits, the Leyland number<ref>[https://www.mersenneforum.org/showpost.php?p=521992&postcount=263 Leyland number] by [[Hans Havermann ]]</ref>, dates and persons of finding and prooving if available and the program used to proove a prime. |
+ | |||
+ | ===Leyland numbers=== | ||
+ | There are <b>{{#expr:{{PAGESINCATEGORY:Leyland prime P|pages}}-2}}</b> numbers: [[:Category:Leyland_prime_P_proven|{{PAGESINCATEGORY:Leyland prime P proven|pages}} proven primes]] and [[:Category:Leyland prime P PRP|{{PAGESINCATEGORY:Leyland prime P PRP|pages}} PRP's]] | ||
+ | *[[:Category:Leyland prime P|Category]] | ||
+ | *[[Leyland_prime_P_table|Table]] | ||
+ | |||
+ | ===Leyland numbers second kind=== | ||
+ | *[[:Category:Leyland prime M|Category]] | ||
+ | |||
+ | ==Reservation history== | ||
+ | |||
+ | ==Contribution of Leyland numbers== | ||
+ | This graph can be found [https://www.mersenneforum.org/showpost.php?p=522753&postcount=279 here]: | ||
+ | |||
+ | [[File:Leyland P contrib.png|1000px]] | ||
+ | |||
+ | ==References== | ||
+ | <references/> | ||
+ | |||
+ | ==External links== | ||
+ | *[[Wikipedia:Leyland_number|Leyland number]] | ||
+ | *[https://www.mersenneforum.org/forumdisplay.php?f=110 Main thread] of [[XYYXF Project]] at [[MersenneForum]] | ||
+ | *[https://www.mersenneforum.org/showthread.php?t=19347 Current search] for Leyland PRP's at [[MersenneForum]] | ||
+ | *[https://www.mersenneforum.org/showthread.php?t=19348 Prime proofs] of Leyland numbers at [[MersenneForum]] | ||
+ | *[http://www.leyland.vispa.com/numth/factorization/main.htm Homepage] of [[Paul Leyland]] | ||
+ | *[http://www.leyland.vispa.com/numth/primes/xyyx.htm Page] of Leyland numbers, dated 2006-10-06 by P.Leyland | ||
+ | *[http://www.primefan.ru/xyyxf/primes.html Homepage] of [[Andrey Kulsha]], dated 2017-01-04 | ||
+ | *[https://groups.yahoo.com/neo/groups/xyyxf/info Yahoo group], 2005 to 2016 | ||
+ | *{{OEIS|l|A061119}} of n^2 + 2^n | ||
+ | *{{OEIS|l|A253471}} of n^3 + 3^n | ||
+ | *[https://www.youtube.com/watch?v=Lsu2dIr_c8k YouTube "Leyland Numbers - Numberphile"] | ||
+ | |||
− | [[Category: | + | [[Category:Leyland prime| ]] |
Revision as of 23:03, 31 July 2019
A Leyland number is a number that can be expressed in the form [math]\displaystyle{ x^y+y^x }[/math], where x and y are positive integers with the condition 1 < x ≤ y. These numbers are named after Paul Leyland, who first studied these numbers in 1994. The first few nontrivial Leyland numbers are given by OEIS sequence A076980.
A Leyland prime is a Leyland number which is also a prime (see sequence A094133 in OEIS).
The second kind of numbers are of the form [math]\displaystyle{ x^y-y^x }[/math].
Contents
History
Data
The data tables contains for every number the x and y values, the number of digits, the Leyland number[1], dates and persons of finding and prooving if available and the program used to proove a prime.
Leyland numbers
There are Expression error: Unrecognized punctuation character ",". numbers: 307 proven primes and 1,507 PRP's
Leyland numbers second kind
Reservation history
Contribution of Leyland numbers
This graph can be found here:
References
External links
- Leyland number
- Main thread of XYYXF Project at MersenneForum
- Current search for Leyland PRP's at MersenneForum
- Prime proofs of Leyland numbers at MersenneForum
- Homepage of Paul Leyland
- Page of Leyland numbers, dated 2006-10-06 by P.Leyland
- Homepage of Andrey Kulsha, dated 2017-01-04
- Yahoo group, 2005 to 2016
- sequence A061119 in OEIS of n^2 + 2^n
- sequence A253471 in OEIS of n^3 + 3^n
- YouTube "Leyland Numbers - Numberphile"