Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Williams prime MM 5"

From Prime-Wiki
Jump to: navigation, search
(cat.)
m
Line 2: Line 2:
  
 
==Definition==
 
==Definition==
[[Prime number|Primes]] of the form <math>4 \cdot 5^n-1</math>.
+
[[Prime number|Primes]] of the form <math>4 \cdot {5^n{-}1}</math>.
  
==Data==
+
==Primes for ''n''==
Primes for ''n'':
+
1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989
:1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989
 
  
 
==Search range==
 
==Search range==
Line 21: Line 20:
 
|2007-07-13||Checked to ''n''=110000, Geoff Reynolds
 
|2007-07-13||Checked to ''n''=110000, Geoff Reynolds
 
|-
 
|-
|2006-08||Found n=15393, antiroach
+
|2006-08||Found ''n''=15393, antiroach
 
|-
 
|-
 
|1981||Found ''n''=1 ... 339, checked to ''n''=500, [http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf H. C. Williams]
 
|1981||Found ''n''=1 ... 339, checked to ''n''=500, [http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf H. C. Williams]

Revision as of 08:08, 13 December 2018

Reserved! This sequence is currently reserved by: User:Karbon

Definition

Primes of the form [math]\displaystyle{ 4 \cdot {5^n{-}1} }[/math].

Primes for n

1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989

Search range

321000 (2018-12-07)

History

Date Remark
2018-12-07 Found n=282989, Karsten Bonath
2007-20-12 Checked to n=200000, Geoff Reynolds
2007-07-13 Checked to n=110000, Geoff Reynolds
2006-08 Found n=15393, antiroach
1981 Found n=1 ... 339, checked to n=500, H. C. Williams

External links