Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Williams prime MP 10"
(comment) |
(n=1038) |
||
Line 20: | Line 20: | ||
790 | 790 | ||
905 | 905 | ||
− | 1038 | + | 1038;55485 |
66886;72945 | 66886;72945 | ||
70500;73683 | 70500;73683 | ||
Line 28: | Line 28: | ||
380734 | 380734 | ||
583696;130989 | 583696;130989 | ||
− | |WiRemarks=The {{OEIS|l|A056797}}<br>For all even n-values {{Kbn|+|9|10|n}} is a Generalized Fermat. | + | |WiRemarks=The {{OEIS|l|A056797}}<br>For all even n-values {{Kbn|+|9|10|n}} is a [[Generalized Fermat number]]. |
}} | }} | ||
==History== | ==History== | ||
Line 38: | Line 38: | ||
{{HistF|2005-03-10|70500|Peter Benson}} | {{HistF|2005-03-10|70500|Peter Benson}} | ||
{{HistF|2004-12-31|66886|Peter Benson}} | {{HistF|2004-12-31|66886|Peter Benson}} | ||
+ | {{HistF|1994|1038|Harvey Dubner}} |
Revision as of 08:44, 26 June 2020
Current data
|
|
Remarks : |
The sequence A056797 in OEIS For all even n-values 9•10n+1 is a Generalized Fermat number. |
History
- 2020-06-25: Found n = 583696, Predrag Kurtovic
- 2019-09-18: Found n = 380734, Predrag Kurtovic
- 2015-01-21: Checked to n = 200000, Robert Price
- 2015-01-21: Found n = 127240, Robert Price
- 2013-09-23: Found n = 100613, Predrag Kurtovic
- 2005-03-10: Found n = 70500, Peter Benson
- 2004-12-31: Found n = 66886, Peter Benson
- 1994: Found n = 1038, Harvey Dubner