Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Template:Generalized Fermat number"
(data from GF Disvisors) |
m |
||
Line 100: | Line 100: | ||
}}<!-- | }}<!-- | ||
-->{{#if:{{#var:dat}}|, found {{#explode:{{#var:dat}}| |0}} by }}{{#arraydefine:disc|{{#explode:{{#var:dat}}| |1}}|/;/}}{{#arrayprint:disc|, |@@@|[[@@@]]}}<!-- | -->{{#if:{{#var:dat}}|, found {{#explode:{{#var:dat}}| |0}} by }}{{#arraydefine:disc|{{#explode:{{#var:dat}}| |1}}|/;/}}{{#arrayprint:disc|, |@@@|[[@@@]]}}<!-- | ||
− | -->{{#ifeq:{{NAMESPACENUMBER}}|0|[[Category:Generalized Fermat number {{{GFNa}}} {{{GFNb}}}]]}} | + | -->{{#ifeq:{{NAMESPACENUMBER}}|0|[[Category:Generalized Fermat number {{{GFNa}}} {{{GFNb}}}|#.....{{padleft:{{{GFNa}}}|5|0}}]]}} |
}}</includeonly> | }}</includeonly> |
Revision as of 11:01, 22 June 2021
Description
Template Generalized Fermat number
Collect the data of a Generalized Fermat number (for b=1 this is a Fermat number).
Prototype
{{Generalized Fermat number |GFNa= |GFNb= |GFNn= |GFNFDBid= |GFNDigits= |GFNFactors= |GFNState= |GFNRemarks= }}
Parameters
See also
Example
{{Generalized Fermat number |GFNa=2 |GFNb=1 |GFNn=207 |GFNFDBid=1000000000002000017 |GFNDigits=1234 |GFNFactors= 3,41 7,14 17353230210429594579133099699123162989482444520899,15 C1133,1100000000212123761 P345,1100000000212123762 |GFNState=Composite |GFNRemarks=test }}
will create:
Current data
|
Remarks : |
test |
Factors
- Proth 3•241+1 (GF Divisor), found 1903 by James Cullen, Allan Cunningham, Alfred Edward Western
- Proth 7•214+1 (GF Divisor), found 1877 by Ivan Mikheevich Pervushin, Édouard Lucas
- Proth 17353230210429594579133099699123162989482444520899•215+1 (GF Divisor)17353230210429594579133099699123162989482444520899
- Composite C<1133>
- Prime P<345>
Factorization
6597069766657<13> * 114689 * 17353230210429594579133099699123162989482444520899 * C<1133> * P<345>