Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Williams prime MM 5"

From Prime-Wiki
Jump to: navigation, search
(updated)
(update)
Line 1: Line 1:
{{Reserved|User:Karbon}}
 
 
 
==Definition==
 
==Definition==
[[Williams prime]] ''(b-1)&times; b<sup>n</sup>-1'' with ''b'' = 5 ([[prime]]s of the form 4 &times; 5<sup>n</sup>-1, ''n'' ≥ 1).
+
[[Williams prime]]s {{Kbn|(b-1)|b|n}} with ''b'' = 5 ([[prime]]s of the form {{Kbn|4|5|n}}, ''n'' ≥ 1).
  
 
==Prime for ''n''==
 
==Prime for ''n''==
Line 8: Line 6:
  
 
==Search range==
 
==Search range==
''n'' = 905000 (2019-03-07)
+
''n'' = 1000000 (2019-04-04)
  
 
==History==
 
==History==
 
{|class="wikitable"
 
{|class="wikitable"
 
!Date!!Remark
 
!Date!!Remark
 +
|-
 +
|2019-04-04||Checked to ''n'' = 1000000, [[User:Karbon|Karsten Bonath]]
 
|-
 
|-
 
|2019-02-23||found ''n'' = 864751, [[User:Karbon|Karsten Bonath]]
 
|2019-02-23||found ''n'' = 864751, [[User:Karbon|Karsten Bonath]]

Revision as of 09:38, 4 April 2019

Definition

Williams primes (b-1)bn-1 with b = 5 (primes of the form 4•5n-1, n ≥ 1).

Prime for n

1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989, 498483, 504221, 754611, 864751

Search range

n = 1000000 (2019-04-04)

History

Date Remark
2019-04-04 Checked to n = 1000000, Karsten Bonath
2019-02-23 found n = 864751, Karsten Bonath
2019-01-27 found n = 754611, Karsten Bonath
2018-12-24 found n = 504221, Karsten Bonath
2018-12-23 found n = 498483, Karsten Bonath
2018-12-06 Checked to n = 1 - 321000, found n = 282989, Karsten Bonath
2007-20-12 Checked to n = 200000, Geoff Reynolds
2007-07-13 Checked to n = 110000, Geoff Reynolds
2006-08 Found n = 15393, antiroach
1981 Checked to n = 500, found n = 1 ... 339, H. C. Williams

External links