Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Repunit"

From Prime-Wiki
Jump to: navigation, search
(restored)
 
(cat. changed)
Line 17: Line 17:
 
| align="center"|<math>\Downarrow</math>
 
| align="center"|<math>\Downarrow</math>
 
|-
 
|-
| align="center"|Repunit<br>(Repdigit, digit = 1)
+
| align="center"|'''Repunit'''<br>(Repdigit, digit = 1)
 
|-
 
|-
 
| align="center"|<math>\Downarrow</math>
 
| align="center"|<math>\Downarrow</math>
 
|-
 
|-
| align="center"|[[Mersenne number]]s<br>(Base 2 repunit)
+
| align="center"|[[Mersenne number]]<br>(Base 2 repunit)
 
|-
 
|-
 
| align="center"|<math>\Downarrow</math>
 
| align="center"|<math>\Downarrow</math>
 
|-
 
|-
| align="center"|[[Mersenne prime]]s
+
| align="center"|[[Mersenne prime]]
 
|}
 
|}
  
 
==External links==
 
==External links==
*[http://en.wikipedia.org/wiki/Repunit Wikipedia]
+
*[[Wikipedia:Repunit|Repunit]]
[[Category:Math]]
+
[[Category:Numbers]]

Revision as of 08:53, 8 February 2019

A repunit is a number in any base that is made of only of 1's for each digit. All Mersenne numbers are repunit (repeated unit, "1" being the number referred to as "unity") numbers. 111 is a repunit, in base 2 it is equal to 7 (base 10), in base 3 it is equal to 13 (base 10).

Repunit numbers are of the form:

(10n - 1) / 9

Repunits are a sub-set of repdigit numbers.

Repdigit (repeated digit) numbers are sub-set of palindromic numbers.

So, Mersenne primes are a small sub-set of numbers that fits within the larger classes. The following table shows how these are related (with each group getting smaller on each succesive line.)

Palindromic
[math]\displaystyle{ \Downarrow }[/math]
Repdigit
(Palidromes using a single digit)
[math]\displaystyle{ \Downarrow }[/math]
Repunit
(Repdigit, digit = 1)
[math]\displaystyle{ \Downarrow }[/math]
Mersenne number
(Base 2 repunit)
[math]\displaystyle{ \Downarrow }[/math]
Mersenne prime

External links