Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Riesel problem 1"
(typo fixed, clarify problem) |
m (→See also) |
||
Line 6: | Line 6: | ||
==See also== | ==See also== | ||
− | *[[PrimeGrid]] | + | *[[PrimeGrid Riesel Problem]] |
*[[Riesel Sieve]] | *[[Riesel Sieve]] | ||
Revision as of 03:09, 9 June 2020
This article is only a stub. You can help PrimeWiki by expanding it. |
The Riesel problem consists in determining the smallest Riesel number.
In 1956, Hans Riesel showed that there are an infinite number of integers k such that k × 2n − 1 is not prime for any integer n. He showed that the number k = 509,203 has this property. It is conjectured that 509203 is the smallest such number that has this property. To prove this, it suffices to show that there exists a value n such that k × 2n - 1 is prime for each k ≤ 509202. As of Aug. 2019, there are 49 k values smaller than 509203 that have no known primes.