Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Liskovets-Gallot conjectures"

From Prime-Wiki
Jump to: navigation, search
(page links)
m (Search: Typo)
Line 36: Line 36:
  
 
==Search==
 
==Search==
The current search is maintaind by the [[Conjectures 'R Us]] project and can be found [[CRUS Liskovets-Gallot|here]].
+
The current search is maintained by the [[Conjectures 'R Us]] project and can be found [[CRUS Liskovets-Gallot|here]].
  
 
==Links==
 
==Links==
 
*[https://www.primepuzzles.net/problems/prob_036.htm Problem 36] "The Liskovets-Gallot numbers" from [https://www.primepuzzles.net/index.shtml PP&P connection] by [[Carlos Rivera]]
 
*[https://www.primepuzzles.net/problems/prob_036.htm Problem 36] "The Liskovets-Gallot numbers" from [https://www.primepuzzles.net/index.shtml PP&P connection] by [[Carlos Rivera]]
 
[[Category:Math]]
 
[[Category:Math]]

Revision as of 21:48, 4 September 2020

Definitions

Valery Liskovets studied the list of k•2n+1 primes and observed, that the k's (k divisible by 3) got an irregular contribution of odd and even exponents yielding a prime.

Examples: (for 1 <= n <= 100000)

k-value # odd # even
51 38 5
231 51 9
261 56 14
87 2 36
93 1 38
177 8 46

So Liskovets formulated the conjecture:

"There exist k, 3|k, such that primes k•2n+1 do exist but only with odd n /only with even n."

Yves Gallot extended this for k•2n-1 numbers and gave also the first solutions as:

k•2n+1 is composite for all even n for k=66741
k•2n+1 is composite for all odd n for k=95283
k•2n-1 is composite for all even n for k=39939
k•2n-1 is composite for all odd n for k=172677

Proof

The verification of these conjectures has to be done in the same manner like the Riesel problem: find a prime for all k-values less than the given with the needed condition.

Search

The current search is maintained by the Conjectures 'R Us project and can be found here.

Links