Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Generalized Fermat number"

From Prime-Wiki
Jump to: navigation, search
m
(add link)
Line 56: Line 56:
 
==External links==
 
==External links==
 
*[[Wikipedia:Fermat_number#Generalized_Fermat_numbers|Generalized Fermat numbers]]
 
*[[Wikipedia:Fermat_number#Generalized_Fermat_numbers|Generalized Fermat numbers]]
*[http://www.alpertron.com.ar/MODFERM.HTM Factorization of numbers of the form F<sub>n,2</sub>]: it includes a program to factor generalized Fermat numbers.
+
*[http://prothsearch.com/OriginalGFNs.html Factors of Generalized Fermat numbers found after Björn & Riesel]
*[http://prothsearch.com/GFNfacs.html Factors of generalized Fermat numbers found after Björn & Riesel]
+
*[http://prothsearch.com/GFNfacs.html Extension with new factors of Generalized Fermat numbers]
*[http://members.cox.net/jfoug/GFNFacts_Riesel.html Factors of generalized Fermat numbers found after Björn & Riesel (original)]
+
*[http://prothsearch.com/GFNsmall.html Factorizations of small Generalized Fermat numbers]
 +
*<nowiki>http://members.cox.net/jfoug/GFNFacts_Riesel.html</nowiki>: Factors of generalized Fermat numbers found after Björn & Riesel (original) - not available
 
*[http://mathworld.wolfram.com/GeneralizedFermatNumber.html MathWorld article]
 
*[http://mathworld.wolfram.com/GeneralizedFermatNumber.html MathWorld article]
 
*[http://yves.gallot.pagesperso-orange.fr/primes/ Generalized Fermat Prime Search]
 
*[http://yves.gallot.pagesperso-orange.fr/primes/ Generalized Fermat Prime Search]
 
*[http://jeppesn.dk/generalized-fermat.html List of generalized Fermat primes in bases up to 1000]
 
*[http://jeppesn.dk/generalized-fermat.html List of generalized Fermat primes in bases up to 1000]
 
*[http://www.noprimeleftbehind.net/crus/GFN-primes.htm List of generalized Fermat primes in bases up to 1030]
 
*[http://www.noprimeleftbehind.net/crus/GFN-primes.htm List of generalized Fermat primes in bases up to 1030]
 +
*[http://www.alpertron.com.ar/MODFERM.HTM Factorization of numbers of the form F<sub>n,2</sub>]: it includes a program to factor generalized Fermat numbers.
  
 
==References==
 
==References==

Revision as of 07:08, 23 May 2024

There are different kinds of generalized Fermat numbers.

John Cosgrave

John Cosgrave has studied the following numbers:

Numbers of the form: [math]\displaystyle{ F_{n,r} = \sum_{i=0}^{p-1} \ 2^{i p^{n}} \ = \ 2^{(p-1)p^n}+2^{(p-2)p^n}+...+2^{2p^n}+2^{p^n}+1 \ = \ (2^{p^{n+1}}-1)/(2^{p^n}-1) }[/math] where p is the prime of apparition rank r (r(2)=1, r(3)=2, r(5)=3, ...) and n is greater or equal to 0.

[math]\displaystyle{ F_{0,r} }[/math] generates the Mersenne numbers.
[math]\displaystyle{ F_{n,1} }[/math] generates the Fermat numbers.
[math]\displaystyle{ F_{n,2} }[/math] generates the Saouter numbers.

Cosgrave has proven the following properties:

  1. If number [math]\displaystyle{ \sum_{i=0}^{p-1}\ (2^i)^{m} \ }[/math] is prime, then [math]\displaystyle{ m=p^n }[/math].
  2. [math]\displaystyle{ F_{n,r} }[/math] numbers are pairwise relatively prime within a rank and across ranks: [math]\displaystyle{ gcd(F_{n,i},F_{m,j}) =1 }[/math] for all n, m, i and j.
  3. They satisfy a product property like Fermat numbers have. And every [math]\displaystyle{ F_{n,r} }[/math] passes Fermat's test to base 2.

Saouter has proven that [math]\displaystyle{ F_{n,2} }[/math] numbers can be proven prime by using Pépin's test with k=5.

Dubner

In 1985, Dubner for the first time built a list of large primes of the form: b2m+1, b ≥ 2 and m ≥ 1.

See also: H.Dubner, W.Keller: "Factors of generalized Fermat numbers" (1995)[1]

Björn & Riesel

In 1998, Björn & Riesel[2] for the first time built a list of large primes of the form: a2m+b2m, b > a ≥ 2 and m ≥ 1.

Notes for this Wiki

Divisibilities of Generalized Fermat numbers for any Proth primes k•2n+1 are listed as GF Divisor on their own page. They are listed as F(n), GF(n,a) or xGF(n,a,b) as used by the output of PFGW or at the The Prime Pages.

To test any Proth prime for divisibilities of Generalized Fermat numbers the program PFGW can be used. For example to test Proth 3•241+1 call

pfgw -gxo -a2 -q"3*2^41+1"

which results in

3*2^41+1 is a Factor of F38!!!! (0.000000 seconds)
3*2^41+1 is a Factor of GF(38,3)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(37,3,2)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(38,4,3)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of GF(35,6)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(36,8,3)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(38,9,2)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(38,9,8)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of xGF(39,11,7)!!!! (0.000000 seconds)
3*2^41+1 is a Factor of GF(38,12)!!!! (0.000000 seconds)
GFN testing completed

listed on the GF Divisor page.

Only proper factors of Generalized Fermat numbers are listed.

Special conditions for Proth primes

A Proth prime written in the normalized form kbn+1 is also a Generalized Fermat number under special conditions:

If the k-value is a square and the n-value even the Proth prime kbn+1 is also a Generalized Fermat number of the form

[math]\displaystyle{ \Large (\sqrt{k}\cdot b^{n\over 2})^{2^1} + 1 }[/math].

Example: The Proth prime 289•218502+1 is also a Generalized Fermat number of the form (17*29251)21+1. See 289*218502+1 which is also a Cullen prime.

External links

References

Generalized Fermat numbers
Miscellaneous
Fermat numbers
Gen. Fermat primes
Gen. Fermat primes
Gen. Fermat primes
categories
GF Divisors