Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Riesel prime 3 10"
(separate from Williams sequence) |
(add Woodall primes) |
||
Line 14: | Line 14: | ||
4;C:{{NWi|PM|9|2}} | 4;C:{{NWi|PM|9|2}} | ||
8;C:{{NWi|PM|9|4}} | 8;C:{{NWi|PM|9|4}} | ||
− | 10;C:{{NWi|PM|9|5}} | + | 10;C:{{NWo|3|10}}, {{NWi|PM|9|5}} |
14;C:{{NWi|PM|9|7}} | 14;C:{{NWi|PM|9|7}} | ||
20;C:{{NWo|9|10}}, {{NWi|PM|9|10}} | 20;C:{{NWo|9|10}}, {{NWi|PM|9|10}} | ||
22;C:{{NWi|PM|9|11}} | 22;C:{{NWi|PM|9|11}} | ||
26;C:{{NWi|PM|9|13}} | 26;C:{{NWi|PM|9|13}} | ||
− | 30;C:{{NWi|PM|9|15}} | + | 30;C:{{NWo|27|10}}, {{NWi|PM|9|15}} |
38;C:{{NWi|PM|9|19}} | 38;C:{{NWi|PM|9|19}} | ||
39 | 39 |
Revision as of 05:48, 19 September 2024
Reserved! This sequence is currently reserved by: Riley Fisher |
Current data
|
|
Remarks : |
See the sequence A005542 in OEIS For additional even n history, see Williams 10•9n-1. |
Notes
- ↑ Williams 10•91-1
- ↑ Williams 10•92-1
- ↑ Williams 10•94-1
- ↑ Woodall 10•310-1, Williams 10•95-1
- ↑ Williams 10•97-1
- ↑ Woodall 10•910-1, Williams 10•910-1
- ↑ Williams 10•911-1
- ↑ Williams 10•913-1
- ↑ Woodall 10•2710-1, Williams 10•915-1
- ↑ Williams 10•919-1
- ↑ Williams 10•927-1
- ↑ Williams 10•929-1
- ↑ Williams 10•935-1
- ↑ Williams 10•942-1
- ↑ Williams 10•951-1
- ↑ Williams 10•970-1
- ↑ Williams 10•9112-1
- ↑ Williams 10•9164-1
- ↑ Williams 10•9179-1
- ↑ Williams 10•9180-1
- ↑ Williams 10•9242-1
- ↑ Williams 10•9454-1
- ↑ Williams 10•9621-1
- ↑ Williams 10•92312-1
- ↑ Williams 10•93553-1
- ↑ Williams 10•96565-1
- ↑ Williams 10•914026-1
- ↑ Williams 10•916083-1
- ↑ Williams 10•918493-1
- ↑ Williams 10•943289-1
- ↑ Williams 10•944970-1
- ↑ Williams 10•973654-1
- ↑ Williams 10•979638-1
- ↑ Williams 10•9218669-1
History
- 2024-08-23: Reserved by Riley Fisher for n = 200000 - 500000 odd n only
- 2024-08-23: Checked n = 200000 - 500000 only even n, Riley Fisher, from Williams 10•9n-1
- 2024-02-29: Checked n = 1 - 50000, Karsten Bonath
- 2014-03-16: Checked n = 1 - 200000, Robert Price