Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Generalized Fermat number

From Prime-Wiki
Revision as of 13:22, 6 March 2019 by Karbon (talk | contribs) (cat. changed)
Jump to: navigation, search

There are different kinds of generalized Fermat numbers.

John Cosgrave

John Cosgrave has studied the following numbers:

Numbers of the form: Fn,r=i=0p1 2ipn = 2(p1)pn+2(p2)pn+...+22pn+2pn+1 = (2pn+11)/(2pn1) where p is the prime of apparition rank r (r(2)=1, r(3)=2, r(5)=3, ...) and n is greater or equal to 0.

F0,r generates the Mersenne numbers.
Fn,1 generates the Fermat numbers.
Fn,2 generates the Saouter numbers.

Cosgrave has proven the following properties:

  1. If number i=0p1 (2i)m  is prime, then m=pn.
  2. Fn,r numbers are pairwise relatively prime within a rank and across ranks: gcd(Fn,i,Fm,j)=1 for all n, m, i and j.
  3. They satisfy a product property like Fermat numbers have. And every Fn,r passes Fermat's test to base 2.

Saouter has proven that Fn,2 numbers can be proven prime by using the Pépin's test with k=5.

Dubner

In 1985, Dubner for the first time built a list of large primes of the form: b2m+1, b ≥ 2 and m ≥ 1.

Björn & Riesel

In 1998, Björn & Riesel for the first time built a list of large primes of the form: a2m+b2m, b > a ≥ 2 and m ≥ 1.

External links

References

  • Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), pp. 441-446