Factorizations and statistics of Generalized Fermat numbers GF(3,1) = 32n+1 div 2 and their factors k•2n+1.
Currently there are 121 factors known.
Count of factors according to difference n - m
Factorizations
There are 15 General Fermat numbers:
m
|
State
|
Factorization
|
0
|
PR
|
2
|
1
|
PR
|
5
|
2
|
PR
|
41
|
3
|
FF
|
17 * 193
|
4
|
PR
|
21523361
|
5
|
PR
|
926510094425921
|
6
|
PR
|
1716841910146256242328924544641
|
7
|
FF
|
257 * 275201 * 138424618868737<15> * 3913786281514524929<19> * 153849834853910661121<21>
|
8
|
FF
|
12289 * 8972801 * 891206124520373602817<21>
|
9
|
FF
|
134382593 * 22320686081<11> * 12079910333441<14> * 100512627347897906177<21>
|
15
|
CF
|
65537 * 786433 * 3041503300933451777<19> * 951901181416549122049<21> * C<15584>
|
207
|
UF
|
2468256835981809063232453773836025757474103798450369795022913537<64>
|
34346
|
UF
|
P<10341>
|
42290
|
UF
|
P<12733>
|
16408814
|
UF
|
P<4939547>
|
Generalized Fermat numbers
Gen. Fermat primes
|
- a2n+b2n as (a,b) : (2,1)
- (3,1)
- (3,2)
- (4,3)
- (5,1)
- (5,2)
- (5,3)
- (5,4)
- (6,1)
- (6,5)
- (7,1)
- (7,2)
- (7,3)
- (7,4)
- (7,5)
- (7,6)
- (8,1)
- (8,3)
- (8,5)
- (8,7)
- (9,2)
- (9,5)
- (9,7)
- (9,8)
- (10,1)
- (10,3)
- (10,7)
- (10,9)
- (11,1)
- (11,2)
- (11,3)
- (11,4)
- (11,5)
- (11,6)
- (11,7)
- (11,8)
- (11,9)
- (11,10)
- (12,1)
- (12,5)
- (12,7)
- (12,11)
|
Gen. Fermat primes categories
|
- (2,1)
- (3,1)
- (3,2)
- (4,3)
- (5,1)
- (5,2)
- (5,3)
- (5,4)
- (6,1)
- (6,5)
- (7,1)
- (7,2)
- (7,3)
- (7,4)
- (7,5)
- (7,6)
- (8,1)
- (8,3)
- (8,5)
- (8,7)
- (9,2)
- (9,5)
- (9,7)
- (9,8)
- (10,1)
- (10,3)
- (10,7)
- (10,9)
- (11,1)
- (11,2)
- (11,3)
- (11,4)
- (11,5)
- (11,6)
- (11,7)
- (11,8)
- (11,9)
- (11,10)
- (12,1)
- (12,5)
- (12,7)
- (12,11)
|
GF Divisors
|
- (2,1)
- (3,1)
- (3,2)
- (4,3)
- (5,1)
- (5,2)
- (5,3)
- (5,4)
- (6,1)
- (6,5)
- (7,1)
- (7,2)
- (7,3)
- (7,4)
- (7,5)
- (7,6)
- (8,1)
- (8,3)
- (8,5)
- (8,7)
- (9,2)
- (9,5)
- (9,7)
- (9,8)
- (10,1)
- (10,3)
- (10,7)
- (10,9)
- (11,1)
- (11,2)
- (11,3)
- (11,4)
- (11,5)
- (11,6)
- (11,7)
- (11,8)
- (11,9)
- (11,10)
- (12,1)
- (12,5)
- (12,7)
- (12,11)
|