Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Law of quadratic reciprocity
The law of quadratic reciprocity predicts whether an odd prime number p is a quadratic residue or non-residue modulo another odd prime number [math]\displaystyle{ q }[/math] if we know whether [math]\displaystyle{ q }[/math] is a quadratic residue or non-residue modulo [math]\displaystyle{ p }[/math].
- If at least one of [math]\displaystyle{ p }[/math] or [math]\displaystyle{ q }[/math] are congruent to 1 mod 4: [math]\displaystyle{ p }[/math] is a quadratic residue modulo [math]\displaystyle{ q }[/math] if and only if [math]\displaystyle{ q }[/math] is a quadratic residue modulo [math]\displaystyle{ p }[/math].
- If both of [math]\displaystyle{ p }[/math] or [math]\displaystyle{ q }[/math] are congruent to 3 mod 4: [math]\displaystyle{ p }[/math] is a quadratic residue modulo [math]\displaystyle{ q }[/math] if and only if [math]\displaystyle{ q }[/math] is a quadratic non-residue modulo [math]\displaystyle{ p }[/math].
This theorem was first proved by Carl Friedrich Gauss in 1801.
This does not cover the cases where we want to know whether -1 or 2 are quadratic residues or non-residues modulo [math]\displaystyle{ p }[/math].
- 2 is a quadratic residue modulo [math]\displaystyle{ p }[/math] if and only if [math]\displaystyle{ p }[/math] is congruent to 1 or 7 (mod 8).
- -1 is a quadratic residue modulo [math]\displaystyle{ p }[/math] if and only if [math]\displaystyle{ p }[/math] is congruent to 1 (mod 4).