Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "List of known Mersenne primes"
m |
|||
Line 425: | Line 425: | ||
{{#dpl: | {{#dpl: | ||
− | + | |category=Category:Mersenne prime | |
− | + | |nottitlematch=Mersenne prime | |
− | + | |order=ascending | |
− | + | |ordermethod=sortkey | |
− | + | |include={InfoboxMersennePrime} dpl1 | |
− | + | |table=class="wikitable sortable",-,#,n-value,Digits in ''M<sub>n</sub>'',Digits in ''P<sub>n</sub>'',Value of ''M<sub>n</sub>'',Date,Discoverer & Credits | |
− | + | |tablerow=%% | |
}} | }} | ||
:{{C|red|'''*'''}} = Provisional ranking | :{{C|red|'''*'''}} = Provisional ranking |
Revision as of 14:20, 17 February 2019
- Mn denotes the Mersenne prime [math]\displaystyle{ 2^n{-}1 }[/math]
- Pn denotes the Perfect number [math]\displaystyle{ 2^{n-1}\cdot(2^n{-}1) }[/math]
# | n | Digits in Mn | Digits in Pn | Value of Mn | Date of discovery |
Discoverer |
---|---|---|---|---|---|---|
50* | 77,232,917 | 23,249,425 | 46,498,850 | 467333183359...069762179071 | 2017-12-26 | Jonathan Pace, George Woltman, Scott Kurowski, Aaron Blosser et. al. GIMPS & PrimeNet |
51* | 82,589,933 | 24,862,048 | 49,724,095 | 148894445742...325217902591 | 2018-12-07 | Patrick Laroche, George Woltman, Aaron Blosser et. al. GIMPS & PrimeNet |
*It is not known whether any undiscovered Mersenne primes exist between the 48th (M57 885 161) and the 51th (M82 589 933) on this chart; the ranking is therefore provisional.
- * = Provisional ranking
See also
External links
- List of known Mersenne prime numbers at Mersenne.org
- prime Mersenne Numbers - History, Theorems and Lists Explanation
- GIMPS Mersenne Prime - status page gives various statistics on search progress, some parts are updated automatically, others typically updated every week, including progress towards proving the ordering of primes 41-47ff
- Mersenne numbers - Wolfram Research/Mathematica
- prime Mersenne numbers - Wolfram Research/Mathematica
- Mq = (8x)^2 - (3qy)^2 Mersenne Proof (pdf)
- Mq = x^2 + d.y^2 Math Thesis (pdf)
- Mersenne Prime Bibliography with Hyperlinks to original publications
- dpa - reportage about prime mersenne number - detection in detail (German)
- Wikipedia