Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Proth prime 3 16"
m |
(add twin) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{ | + | {{Proth prime |
− | | | + | |Pk=16 |
− | | | + | |Pb=3 |
− | | | + | |PCount=34 |
− | | | + | |PNash=2853 |
− | | | + | |PMaxn=200000 |
− | | | + | |PDate=2024-09-16 |
− | | | + | |PReserved= |
− | | | + | |PMultiRes= |
− | 3 | + | |PNlist= |
− | 4 | + | 3;T:T |
+ | 4 | ||
5 | 5 | ||
− | 12 | + | 12 |
− | 24 | + | 24 |
− | 36 | + | 36 |
77 | 77 | ||
195 | 195 | ||
− | 296 | + | 296 |
297 | 297 | ||
533 | 533 | ||
545 | 545 | ||
− | 644 | + | 644 |
− | 884 | + | 884 |
− | 932 | + | 932 |
1409 | 1409 | ||
2061 | 2061 | ||
Line 28: | Line 29: | ||
2985 | 2985 | ||
3381 | 3381 | ||
− | 4980 | + | 4980 |
5393 | 5393 | ||
11733 | 11733 | ||
13631 | 13631 | ||
− | 14516 | + | 14516 |
− | 21004 | + | 21004 |
27663 | 27663 | ||
32645 | 32645 | ||
Line 40: | Line 41: | ||
90543 | 90543 | ||
105293;69359 | 105293;69359 | ||
− | 107448;69428 | + | 107448;69428 |
− | | | + | 193684 |
− | | | + | |PRemarks=For all even {{Vn}}-values {{Kbn|+|16|3|n}} is a [[Generalized Fermat number]]. |
+ | |PSieve= | ||
}} | }} | ||
==History== | ==History== | ||
− | {{HistC| | + | {{HistC|2024-09-16|100000-200000|Gary Barnes|1053838}}, released |
+ | {{HistC|2021-03-09|1-100000|Paul Vanderveen}} | ||
{{HistF|2004-03-08|107448|Peter Benson}} | {{HistF|2004-03-08|107448|Peter Benson}} | ||
{{HistF|2004-03-05|105293|Peter Benson}} | {{HistF|2004-03-05|105293|Peter Benson}} |
Latest revision as of 05:03, 23 September 2024
Current data
|
|
Remarks : |
For all even n-values 16•3n+1 is a Generalized Fermat number. |
Notes
History
- 2024-09-16: Checked n = 100000 - 200000, Gary Barnes, released
- 2021-03-09: Checked n = 1 - 100000, Paul Vanderveen
- 2004-03-08: Found n = 107448, Peter Benson
- 2004-03-05: Found n = 105293, Peter Benson