Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Williams prime PP least"
(new) |
m (consistency) |
||
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{DISPLAYTITLE:Williams primes of the form {{Kbn|+|(b+1)|b|n}}, least | + | {{DISPLAYTITLE:Williams primes of the form {{Kbn|+|(b+1)|b|n}}, least {{Vn}}-values}} |
==Description== | ==Description== | ||
− | Here are shown the least | + | Here are shown the least {{Vn}}-value ≥ 1 for any base {{Vb}} with 2 ≤ {{Vb}} ≤ 1024 which generates a [[Williams prime]] of the form {{Kbn|+|(b+1)|b|n}}. |
+ | |||
+ | Values of bases {{Vb}} ≡ 1 mod 3 are always divisible by 3, so not listed here. | ||
==History== | ==History== | ||
− | * | + | *{{HistF|2020-07-19|135981 ([[Williams prime PP 327|b=327]])|(unknown),Conjectures 'R Us|551009}} |
+ | *{{HistF|2019-06-15|3615 ([[Williams prime PP 929|b=929]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-06-15|4917 ([[Williams prime PP 912|b=912]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-21|13418 ([[Williams prime PP 719|b=719]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-21|37506 ([[Williams prime PP 717|b=717]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-20|24110 ([[Williams prime PP 710|b=710]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-15|3521 ([[Williams prime PP 473|b=473]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-15|1806 ([[Williams prime PP 542|b=542]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-15|6774 ([[Williams prime PP 683|b=683]])|Karsten Bonath}} | ||
+ | *{{HistF|2019-05-14|11229 ([[Williams prime PP 425|b=425]])|Karsten Bonath}} | ||
− | ==Wanted values== | + | ==Wanted values [searched range]== |
− | + | <div style="column-count:6;-moz-column-count:6;-webkit-column-count:6"> | |
− | : | + | {{#dpl: |
+ | |debug=1 | ||
+ | |namespace= | ||
+ | |category=Williams prime PP without | ||
+ | |include={Williams prime}:WiBase,{Williams prime}:WiBase,{Williams prime}:WiMaxn | ||
+ | |mode=userformat | ||
+ | |format=<ul type="disc">,<li>,</li>,</ul> | ||
+ | |secseparators=[[Williams prime PP ,|,,]], [,] | ||
+ | |order=ascending | ||
+ | |ordermethod=sortkey | ||
+ | |oneresultheader=<b>There is one sequence</b>: | ||
+ | |resultsheader=<b>There are %PAGES% sequences</b>: | ||
+ | |noresultsheader=<b>There are no sequences.</b> | ||
+ | }}</div> | ||
+ | '''Notes:''' | ||
+ | *Base 1017 is sometimes reserved and worked on by [[Conjectures 'R Us]]. | ||
==Data== | ==Data== | ||
Line 15: | Line 41: | ||
<div style="width: 12em; height:50em; overflow:auto;"> | <div style="width: 12em; height:50em; overflow:auto;"> | ||
{| class="wikitable sortable" style="height: 200px" | {| class="wikitable sortable" style="height: 200px" | ||
− | ! Base | + | ! data-sort-type="number" class="fixhead" | Base |
− | ! | + | ! data-sort-type="number" class="fixhead" | {{Vn}}-value {{#for_external_table:<nowiki/> |
{{!}}- | {{!}}- | ||
{{!}} style="text-align:right" {{!}} {{{b}}} | {{!}} style="text-align:right" {{!}} {{{b}}} | ||
Line 23: | Line 49: | ||
|} | |} | ||
</div> | </div> | ||
− | + | {{Navbox Williams primes}} | |
− | |||
[[Category:Williams prime PP| ]] | [[Category:Williams prime PP| ]] |
Latest revision as of 00:47, 8 September 2024
Description
Here are shown the least n-value ≥ 1 for any base b with 2 ≤ b ≤ 1024 which generates a Williams prime of the form (b+1)•bn+1.
Values of bases b ≡ 1 mod 3 are always divisible by 3, so not listed here.
History
- 2020-07-19: Found n = 135981 (b=327), (unknown), Conjectures 'R Us
- 2019-06-15: Found n = 3615 (b=929), Karsten Bonath
- 2019-06-15: Found n = 4917 (b=912), Karsten Bonath
- 2019-05-21: Found n = 13418 (b=719), Karsten Bonath
- 2019-05-21: Found n = 37506 (b=717), Karsten Bonath
- 2019-05-20: Found n = 24110 (b=710), Karsten Bonath
- 2019-05-15: Found n = 3521 (b=473), Karsten Bonath
- 2019-05-15: Found n = 1806 (b=542), Karsten Bonath
- 2019-05-15: Found n = 6774 (b=683), Karsten Bonath
- 2019-05-14: Found n = 11229 (b=425), Karsten Bonath
Wanted values [searched range]
Notes:
- Base 1017 is sometimes reserved and worked on by Conjectures 'R Us.
Data
The data file can be found here.
Base | n-value |
---|---|
2 | 1 |
3 | 1 |
5 | 1 |
6 | 1 |
8 | 1 |
9 | 2 |
11 | 2 |
12 | 1 |
14 | 1 |
15 | 1 |
17 | 1 |
18 | 9 |
20 | 1 |
21 | 1 |
23 | 2 |
24 | 1 |
26 | 2 |
27 | 1 |
29 | 5 |
30 | 2 |
32 | 5 |
33 | 1 |
35 | 2 |
36 | 3 |
38 | 1 |
39 | 3 |
41 | 1 |
42 | 2 |
44 | 2 |
45 | 2 |
47 | 2 |
48 | 6 |
50 | 1 |
51 | 183 |
53 | 2 |
54 | 1 |
56 | 2 |
57 | 1 |
59 | 1 |
60 | 21 |
62 | 1 |
63 | 185 |
65 | 3 |
66 | 1 |
68 | 2 |
69 | 1 |
71 | 1 |
72 | 120 |
74 | 2 |
75 | 1 |
77 | 1 |
78 | 1 |
80 | 1 |
81 | 8 |
83 | 5 |
84 | 9 |
86 | 2 |
87 | 2 |
89 | 1 |
90 | 1 |
92 | 2 |
93 | 3 |
95 | 9 |
96 | 14 |
98 | 3 |
99 | 1 |
101 | 1 |
102 | 5 |
104 | 5 |
105 | 1 |
107 | 80 |
108 | 398 |
110 | 1 |
111 | 1 |
113 | 3 |
114 | 3 |
116 | 44 |
117 | 1 |
119 | 1 |
120 | 2 |
122 | 2 |
123 | 2 |
125 | 2 |
126 | 5 |
128 | 3 |
129 | 54 |
131 | 1 |
132 | 54 |
134 | 9 |
135 | 17 |
137 | 20 |
138 | 1 |
140 | 2 |
141 | 1 |
143 | 1 |
144 | 3 |
146 | 3 |
147 | 1 |
149 | 9 |
150 | 1 |
152 | 2 |
153 | 1 |
155 | 1 |
156 | 3 |
158 | 141 |
159 | 32 |
161 | 1 |
162 | 1 |
164 | 1 |
165 | 5 |
167 | 1 |
168 | 1 |
170 | 2 |
171 | 1851 |
173 | 1 |
174 | 14 |
176 | 1 |
177 | 2 |
179 | 2 |
180 | 2 |
182 | 5 |
183 | 3 |
185 | 12 |
186 | 6 |
188 | 1 |
189 | 1 |
191 | 2 |
192 | 1 |
194 | 1 |
195 | 2 |
197 | 18 |
198 | 2 |
200 | 9 |
201 | 31274 |
203 | 1 |
204 | 3 |
206 | 1 |
207 | 8 |
209 | 1 |
210 | 27 |
212 | 6 |
213 | 447 |
215 | 1 |
216 | 8 |
218 | 1 |
219 | 2 |
221 | 5 |
222 | 52725 |
224 | 2 |
225 | 30 |
227 | 36321 |
228 | 5 |
230 | 2 |
231 | 1 |
233 | 6 |
234 | 2 |
236 | 1 |
237 | 30 |
239 | 2 |
240 | 12 |
242 | 9 |
243 | 2 |
245 | 1 |
246 | 1 |
248 | 3 |
249 | 17 |
251 | 11 |
252 | 53 |
254 | 2 |
255 | 2 |
257 | 662 |
258 | 153 |
260 | 9 |
261 | 32 |
263 | 2 |
264 | 2 |
266 | 1 |
267 | 14 |
269 | 1398 |
270 | 5 |
272 | 1 |
273 | 102 |
275 | 1911 |
276 | 12 |
278 | 1 |
279 | 1 |
281 | 8 |
282 | 32 |
284 | 2 |
285 | 2 |
287 | 1 |
288 | 1 |
290 | 1 |
291 | 3 |
293 | 1 |
294 | 2 |
296 | 24 |
297 | 2 |
299 | 26 |
300 | 24 |
302 | 1085 |
303 | 21 |
305 | 6 |
306 | 2 |
308 | 2 |
309 | 1 |
311 | 6 |
312 | 2 |
314 | 1 |
315 | 48 |
317 | 2 |
318 | 30 |
320 | 5 |
321 | 38 |
323 | 2 |
324 | 3 |
326 | 2 |
327 | 135981 |
329 | 1 |
330 | 6 |
332 | 1 |
333 | 26 |
335 | 2 |
336 | 1 |
338 | 5 |
339 | 1002 |
341 | 2 |
342 | 1 |
344 | 1 |
345 | 3 |
347 | 320 |
348 | 1 |
350 | 3 |
351 | 1 |
353 | 3 |
354 | 26 |
356 | 5 |
357 | 1 |
359 | 2 |
360 | 8 |
362 | 200 |
363 | 2 |
365 | 2 |
366 | 5 |
368 | 2 |
369 | 1 |
371 | 5 |
372 | 333 |
374 | 3 |
375 | 2 |
377 | 50 |
378 | 1 |
380 | 24 |
381 | 1 |
383 | 1 |
384 | 2 |
386 | 2 |
387 | 8 |
389 | 2 |
390 | 32 |
392 | 1 |
393 | 17 |
395 | 1 |
396 | 24 |
398 | 1 |
399 | 6 |
401 | 26 |
402 | 1 |
404 | 1 |
405 | 1 |
407 | 2 |
408 | 5 |
410 | 3 |
411 | 35 |
413 | 15 |
414 | 1 |
416 | 1 |
417 | 17 |
419 | 5 |
420 | 9 |
422 | 8 |
423 | 6 |
425 | 11229 |
426 | 1 |
428 | 2 |
429 | 243 |
431 | 18 |
432 | 2 |
434 | 1 |
435 | 1 |
437 | 8 |
438 | 3 |
440 | 2 |
441 | 12 |
443 | 3 |
444 | 12 |
446 | 20 |
447 | 1 |
449 | 696 |
450 | 2 |
452 | 90 |
453 | 1 |
455 | 1 |
456 | 1 |
458 | 3 |
459 | 9 |
461 | 2 |
462 | 14 |
464 | 18 |
465 | 12 |
467 | 2 |
468 | 9 |
470 | 20 |
471 | 2 |
473 | 3521 |
474 | 5 |
476 | 1 |
477 | 12 |
479 | 3 |
480 | 2 |
482 | 2 |
483 | 3 |
485 | 12 |
486 | 38 |
488 | 3 |
489 | 1 |
491 | 17 |
492 | 26 |
494 | 56 |
495 | 1 |
497 | 5 |
498 | 15 |
500 | 1 |
501 | 8 |
503 | 2 |
504 | 36 |
506 | 6 |
507 | 200 |
509 | 20 |
510 | 3 |
512 | 1 |
513 | 3 |
515 | 6 |
516 | 9 |
518 | 1 |
519 | 38 |
521 | 498 |
522 | 92 |
524 | 20 |
525 | 1 |
527 | 17 |
528 | 2 |
530 | 1 |
531 | 1 |
533 | 1 |
534 | 6 |
536 | 2 |
537 | 1 |
539 | 6 |
540 | 1 |
542 | 1806 |
543 | 2 |
545 | 11 |
546 | 2 |
548 | 21 |
549 | 8 |
551 | 1 |
552 | 36 |
554 | 1 |
555 | 2 |
557 | 18 |
558 | 11 |
560 | 1 |
561 | 156 |
563 | 3 |
564 | 2 |
566 | 1 |
567 | 1 |
569 | 96 |
570 | 393 |
572 | 1 |
573 | 50 |
575 | 14 |
576 | 5 |
578 | 450 |
579 | 1 |
581 | 11 |
582 | 1 |
584 | 1 |
585 | 32 |
587 | 8 |
588 | 3 |
590 | 2 |
591 | 2 |
593 | 2 |
594 | 3 |
596 | 5 |
597 | 2 |
599 | 36 |
600 | 8 |
602 | 380 |
603 | 1 |
605 | 1 |
606 | 2 |
608 | 9 |
609 | 1 |
611 | 6 |
612 | 1 |
614 | 11 |
615 | 2 |
617 | 338 |
618 | 2 |
620 | 6 |
621 | 1 |
623 | 3 |
624 | 1 |
626 | 1 |
627 | 6 |
629 | 8 |
630 | 2 |
632 | 18 |
633 | 5246 |
635 | 1 |
636 | 18 |
638 | 11 |
639 | 3 |
641 | 6 |
642 | 1 |
644 | 1 |
645 | 5 |
647 | 504 |
648 | 114 |
650 | 3 |
651 | 2 |
653 | 6 |
654 | 3 |
656 | 2 |
657 | 14 |
659 | 2 |
660 | 261 |
662 | 50 |
663 | 143 |
665 | 5 |
666 | 3 |
668 | 1 |
669 | 32 |
671 | 1 |
672 | 21 |
674 | 2 |
675 | 2 |
677 | 1 |
678 | 215 |
680 | 2 |
681 | 12 |
683 | 6774 |
684 | 2 |
686 | 1 |
687 | 2 |
689 | 2 |
690 | 39 |
692 | 2 |
693 | 11 |
695 | 3 |
696 | 1 |
698 | 3 |
699 | 23 |
701 | 1 |
702 | 9 |
704 | 8 |
705 | 38 |
707 | 2 |
708 | 2 |
710 | 24110 |
711 | 3 |
713 | 2 |
714 | 2 |
716 | 78 |
717 | 37506 |
719 | 13418 |
720 | 1 |
722 | 8 |
723 | 6 |
725 | 6 |
726 | 1 |
728 | 1 |
729 | 5 |
731 | 3 |
732 | 50 |
734 | 5 |
735 | 1 |
737 | 36 |
738 | 15 |
740 | 2 |
741 | 2 |
743 | 1 |
744 | 3 |
746 | 2 |
747 | 1 |
749 | 2 |
750 | 2 |
752 | 2 |
753 | 2 |
755 | 1 |
756 | 5 |
758 | 2 |
759 | 2 |
761 | 1 |
762 | 1 |
764 | 20 |
765 | 3 |
767 | 2 |
768 | 1 |
770 | 191 |
771 | 2 |
773 | 1 |
774 | 35 |
776 | 51 |
777 | 2 |
779 | 3 |
780 | 6 |
782 | 1 |
783 | 2 |
785 | 1 |
786 | 5 |
788 | 39 |
789 | 248 |
791 | 27 |
792 | 1 |
794 | 30 |
795 | 5 |
797 | 21 |
798 | 1 |
800 | 8 |
801 | 1 |
803 | 2 |
804 | 6 |
806 | 9 |
807 | 5 |
809 | 5 |
810 | 2 |
812 | 1 |
813 | |
815 | 2 |
816 | 275 |
818 | 1 |
819 | 1 |
821 | 81 |
822 | 2 |
824 | 8 |
825 | 1 |
827 | 1 |
828 | 3 |
830 | 6 |
831 | 9 |
833 | 17 |
834 | 71 |
836 | 1 |
837 | 2 |
839 | 1 |
840 | 29 |
842 | 69 |
843 | 2 |
845 | 2 |
846 | 1 |
848 | 273 |
849 | 9 |
851 | 9 |
852 | 8 |
854 | 3 |
855 | 1 |
857 | 1 |
858 | 3749 |
860 | 1 |
861 | 2 |
863 | |
864 | 1 |
866 | 2 |
867 | 2 |
869 | 2 |
870 | 3 |
872 | 12 |
873 | 5 |
875 | 1 |
876 | 414 |
878 | 1 |
879 | 11 |
881 | 47 |
882 | 5 |
884 | 5 |
885 | 2 |
887 | 5 |
888 | 1647 |
890 | 1 |
891 | 816 |
893 | 246 |
894 | 1 |
896 | 8 |
897 | 1 |
899 | 1 |
900 | 2 |
902 | 14 |
903 | 29 |
905 | 6 |
906 | 6 |
908 | 5 |
909 | 164 |
911 | 1 |
912 | 4917 |
914 | 12 |
915 | 1 |
917 | 2 |
918 | 1 |
920 | 1 |
921 | 137 |
923 | 11 |
924 | 12 |
926 | 6 |
927 | 1 |
929 | 3615 |
930 | 24 |
932 | 6 |
933 | 2 |
935 | 6 |
936 | 62 |
938 | 17 |
939 | 66 |
941 | 26 |
942 | 5 |
944 | 2 |
945 | 170 |
947 | 2693 |
948 | 33 |
950 | 1 |
951 | 12 |
953 | 2 |
954 | 2 |
956 | 2 |
957 | 2 |
959 | 1 |
960 | 1 |
962 | |
963 | 357 |
965 | 17 |
966 | 6 |
968 | 5 |
969 | 1 |
971 | 2 |
972 | 26 |
974 | 1 |
975 | 2 |
977 | 24 |
978 | 2 |
980 | 17 |
981 | 1 |
983 | 1875 |
984 | 17 |
986 | 78 |
987 | 1 |
989 | 2 |
990 | 1 |
992 | 1 |
993 | 1 |
995 | 6 |
996 | 416 |
998 | 2 |
999 | 3761 |
1001 | 1 |
1002 | 1 |
1004 | 2 |
1005 | 8 |
1007 | 1 |
1008 | 2771 |
1010 | 3351 |
1011 | 1 |
1013 | 3 |
1014 | 3 |
1016 | 1 |
1017 | |
1019 | 89 |
1020 | 1 |
1022 | 1 |
1023 | 6 |
Williams primes
Main |
Type MM: (b-1)•bn-1 |
Type MP: (b-1)•bn+1 |
Type PM: (b+1)•bn-1 |
Type PP: (b+1)•bn+1 |