Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Riesel primes of the form 2n-1

From Prime-Wiki
Revision as of 06:52, 8 August 2019 by Karbon (talk | contribs) (n=85M)
Jump to: navigation, search
Reserved! This sequence is currently reserved by: GIMPS

Current data

k , b : 1 , {{{Rb}}}
Count :
Attention! Parameter RCount=51 not given!
Nash : 925
Max n : 85,000,000
Date : 2019-08-04
Reserved : GIMPSGIMPS/Reserved
2[1], 3[2], 5[3], 7[4], 13[5], 17[6], 19[7], 31[8], 61[9], 89[10], 107[11], 127[12], 521[13], 607[14], 1279[15], 2203[16], 2281[17], 3217[18], 4253[19], 4423[20], 9689[21], 9941[22], 11213[23], 19937[24], 21701[25], 23209[26], 44497[27], 86243[28], 110503[29], 132049[30], 216091[31], 756839[32], 859433[33], 1257787[34], 1398269[35], 2976221[36], 3021377[37], 6972593[38], 13466917[39], 20996011[40], 24036583[41], 25964951[42], 30402457[43], 32582657[44], 37156667[45], 42643801[46], 43112609[47], 57885161[48], 74207281[49], 77232917[50], 82589933[51]
Remarks :
For this k-value these are the Mersenne primes. All exponents n < 47,000,000 have been verified.

[[Category:Riesel {{{Rb}}}|#.....00001]][[Category:Riesel {{{Rb}}} Low-weight|#.....00001]]

Notes

  1. Sophie Germain n=2, Twin n=2, M1, Near Woodall: (1+1)*2^1-1, also (2-1)*2^2-1
  2. Sophie Germain n=3, Woodall, M2, Woodall: 2*2^2-1
  3. M3, Near Woodall: (3+1)*2^3-1
  4. M4, Near Woodall: (5-1)*2^5-1
  5. M5
  6. M6
  7. M7, Near Woodall: (15+1)*2^15-1
  8. M8
  9. M9
  10. M10
  11. M11
  12. M12
  13. Woodall, M13, Woodall: 512*2^512-1
  14. M14
  15. M15
  16. M16
  17. M17
  18. M18
  19. M19
  20. M20
  21. M21
  22. M22
  23. M23
  24. M24
  25. M25
  26. M26
  27. M27
  28. M28
  29. M29
  30. M30
  31. M31
  32. M32
  33. M33
  34. M34
  35. M35
  36. M36
  37. M37
  38. M38
  39. M39
  40. M40
  41. M41
  42. M42
  43. M43
  44. M44
  45. M45
  46. M46
  47. M47
  48. M48
  49. M49
  50. M50
  51. M51

See also