Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
NFSNET
NFSNET is a distributed computing project that uses the GNFS and SNFS factorization methods to completely factor large numbers of interest to the math community. This project is now dead and replaced by NFS@Home.
Contents
Status
This project is now dead.
Results
There are some factorizations completed by NFSNET, all of them Cunningham numbers, are summarized below.
Number | Factors |
---|---|
[math]\displaystyle{ 5^{311}+1 }[/math] | 13132762900451821968706840158108829466847315743095478589617724372773046827 . P86 |
[math]\displaystyle{ 5^{313}-1 }[/math] | 21428622089774767159447145142284385968882142917892658511907216761741 . P143 |
[math]\displaystyle{ 5^{311}-1 }[/math] | 38695455401981313830913060474530524458380779268946879355849020686413069 . P102 |
[math]\displaystyle{ 5^{313}+1 }[/math] | 90107330782710173585723984396630473536745919968792358417711960610369521 . P126 |
[math]\displaystyle{ 10^{229}+1 }[/math] | 13270807703600518273110858480695033043595534787235597140531 . P106 |
[math]\displaystyle{ 2^{772}+1 }[/math] | 61138085212831760012082560001130966245067663049594184076112874904437731971413080237731822785297556226950049 . P108 |
[math]\displaystyle{ 6^{283}-1 }[/math] | 138457361320915478919381975760508114488979126852819238404548238145324558533 . P99 |
[math]\displaystyle{ 5^{317}-1 }[/math] | 1173266048118996938584719882501239841331337879112270918586790280760729499132694039331 . P110 |
[math]\displaystyle{ 6^{284}+1 }[/math] | 555910000634197662765503723258626898712572755963073679357601281305609 . P100 |
[math]\displaystyle{ 5^{323}-1 }[/math] | 824025642333621472612253607491152025643258690550015151 . 4520075300365525822415973296109200878340148487916084028121991 . P72 |
[math]\displaystyle{ 2^{779}+1 }[/math] | 17315878129048863927974905480696448369723747093035498799994851681384411684778961025249 . P127 |
[math]\displaystyle{ 10^{239}-1 }[/math] | 383155477843726029783939406113226468701730728790004161 . 128780300340244872385688233345188210841783983757299260103530718169486826135819357 . P94 |
[math]\displaystyle{ 2^{787}-1 }[/math] | 171124793552074153093621463907993111755630713094272377046079303 . P142 |
[math]\displaystyle{ 2^{787}+1 }[/math] | 1729064962458961255320417417955691339162974743882218922830411737050563040937 . P93 |
[math]\displaystyle{ 10^{239}+1 }[/math] | 2846390188891241030645451773087716881978563746547069042984813032147999326242449 . P142 |
[math]\displaystyle{ 12^{227}+1 }[/math] | 2166927848376622533621794434244289002299826661900783861848021018401 . P147 |
[math]\displaystyle{ 6^{298}+1 }[/math] | 6695749655192816473070349489448185116388391043325628915861 . P157 |
[math]\displaystyle{ 7^{271}-1 }[/math] | 127962646077173632312199483013809163214497588966415507177987147170392729827682423052701976465899731717 . P113 |
[math]\displaystyle{ 2^{788}+1 }[/math] | 16485261130656200872482989844198639841091212639645236223887409386257443385451391361 . P137 |
[math]\displaystyle{ 10^{241}-1 }[/math] | 6864117620760368762783548070444378476387203247067308861991 . P172 |
[math]\displaystyle{ 6^{313}-1 }[/math] | 1145667266428264694407427870250002852640339971370109925272739002529333927038171 . P149 |
[math]\displaystyle{ 7^{319}-1 }[/math] | 204227297293529257125127118080380016745365752943272818676346275973633953383050572371 . P149 |
[math]\displaystyle{ 2^{823}+1 }[/math] | 165504088394688777341777954213302926706011776596326713780562632126238280022902380359311132880309166125996273 . P122 |
[math]\displaystyle{ 2^{823}-1 }[/math] | 14318463776157273132646318179504157563387487409638575094260074593259322339364163972504114136247 . P103 |
[math]\displaystyle{ 10^{287}-1 }[/math] | 386736023165016911595773048286586040278275120007787504683197800313250373 . P140 |
[math]\displaystyle{ 3^{523}-1 }[/math] | 118660861315644501826386980212508132942915206257779375740236957417866662884621310426338818063 . P141 |
[math]\displaystyle{ 11^{244}+1 }[/math] | 8002889920577273830420851090219258342350712388277918047535820689055103751832471481802997113 . P157 |
[math]\displaystyle{ 7^{319}+1 }[/math] | 3975047917431160297249953259955968186945131148887708281805256392393451 . P154 |
[math]\displaystyle{ 7^{304}+1 }[/math] | 996729992864896297685441229117084324961901633115344675218887271504648958630057425015060925493899201 . P145 |
[math]\displaystyle{ 10^{269}-1 }[/math] | 2211459886311754779116554026679494335670326227547524190235297713426923019604371977151573671 . P143 |