Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "Riesel 2 Riesel"

From Prime-Wiki
Jump to: navigation, search
(Using new templates)
(Internationalizing with {{Num}})
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
  
 
==See also==
 
==See also==
*[https://oeis.org/A101036 OEIS sequence A101036]: 15,000 "Riesel numbers that have a covering set"
+
*[https://oeis.org/A101036 OEIS sequence A101036]: {{Num|15000}} "Riesel numbers that have a covering set"
  
 
==Table==
 
==Table==
 +
<div style="width: 20em; height:50em; overflow:auto;">
 
<dpl>
 
<dpl>
 
  debug=0
 
  debug=0
  category=Riesel k=Riesel
+
  category=Riesel 2 Riesel
 
  mode=userformat
 
  mode=userformat
 
  include={Riesel prime}:Rk,{Riesel prime}:RRemarks
 
  include={Riesel prime}:Rk,{Riesel prime}:RRemarks
Line 17: Line 18:
 
  resultsheader=<b>There are %PAGES% sequences in this Wiki</b>:\n
 
  resultsheader=<b>There are %PAGES% sequences in this Wiki</b>:\n
 
</dpl>
 
</dpl>
 +
</div>
 
{{Navbox Riesel primes}}
 
{{Navbox Riesel primes}}
[[Category:Riesel k=Riesel| ]]
+
[[Category:Riesel 2 Riesel| ]]

Latest revision as of 21:12, 17 December 2023

Riesel numbers are odd numbers k for which k•2n-1 is composite for all natural numbers n.

See also

Table

There are 41 sequences in this Wiki:

k Covering set
509203 [3, 5, 7, 13, 17, 241]
762701 [3, 5, 7, 13, 17, 241]
777149 [3, 5, 7, 13, 19, 37, 73]
790841 [3, 5, 7, 13, 19, 37, 73]
992077 [3, 5, 7, 13, 17, 241]
1106681 [3, 5, 7, 13, 19, 37, 73]
1247173 [3, 5, 7, 13, 17, 241]
1254341 [3, 5, 7, 13, 17, 241]
1330207 [3, 5, 7, 13, 17, 241]
1330319 [3, 5, 7, 13, 17, 241]
1715053 [3, 5, 7, 13, 19, 37, 73]
1730653 [3, 5, 7, 13, 17, 241]
1730681 [3, 5, 7, 13, 17, 241]
1744117 [3, 5, 7, 13, 19, 73, 109]
1830187 [3, 5, 7, 13, 37, 73, 109]
1976473 [3, 5, 7, 13, 17, 241]
2136283 [3, 5, 7, 13, 19, 37, 109]
2251349 [3, 5, 7, 13, 19, 37, 109]
2313487 [3, 5, 7, 13, 17, 241]
2344211 [3, 5, 7, 13, 17, 241]
2554843 [3, 5, 7, 13, 17, 241]
2924861 [3, 5, 7, 13, 19, 37, 109]
3079469 [3, 5, 7, 13, 19, 37, 73]
3177553 [3, 5, 7, 13, 17, 241]
3292241 [3, 5, 7, 13, 17, 241]
3419789 [3, 5, 7, 13, 17, 241]
3423373 [3, 5, 7, 13, 17, 241]
3580901 [3, 5, 7, 13, 19, 37, 73]
3661529 [3, 5, 7, 13, 17, 241]
3661543 [3, 5, 7, 13, 17, 241]
3781541 [3, 5, 7, 13, 19, 37, 109]
3784439 [3, 5, 7, 13, 17, 241]
4384979 [3, 5, 7, 13, 17, 241]
4442323 [3, 5, 7, 13, 17, 241]
4485343 [3, 5, 7, 13, 19, 37, 73]
4506097 [3, 5, 7, 13, 17, 241]
4507889 [3, 5, 7, 13, 17, 241]
4570619 [3, 5, 7, 13, 19, 37, 73]
4626967 [3, 5, 7, 13, 17, 241]
4643293 [3, 5, 7, 13, 37, 73, 109]
4953397 [3, 5, 7, 13, 19, 37, 73]
Riesel primes