Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "PrimeGrid"

From Prime-Wiki
Jump to: navigation, search
m (AP27 equation corr)
(link)
 
(5 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
:[[PrimeGrid Proth Prime Search|Proth Prime Search]]: searching for primes of the form {{Kbn|+|k|2|n}}.
 
:[[PrimeGrid Proth Prime Search|Proth Prime Search]]: searching for primes of the form {{Kbn|+|k|2|n}}.
 
:[[PrimeGrid Proth Prime Search Extended|Proth Prime Search Extended]]: searching for primes of the form {{Kbn|+|k|2|n}}.
 
:[[PrimeGrid Proth Prime Search Extended|Proth Prime Search Extended]]: searching for primes of the form {{Kbn|+|k|2|n}}.
:[[PrimeGrid Proth Mega Prime Search|Proth Mega Prime Search]]: searching for primes of the form {{Kbn|+|k|2|n}}.
 
  
 
*Type Sierpiński:
 
*Type Sierpiński:
 
:[[PrimeGrid Seventeen or Bust|Seventeen or Bust]]: helping to solve the [[Sierpiński problem]].
 
:[[PrimeGrid Seventeen or Bust|Seventeen or Bust]]: helping to solve the [[Sierpiński problem]].
:[[PrimeGrid Extended Sierpiński Project|Extended Sierpiński Project]]: helping solve the [[Extended Sierpiński Problem]].
+
:[[PrimeGrid Extended Sierpiński Problem|Extended Sierpiński Problem]]: helping solve the [[Extended Sierpiński Problem]].
 
:[[PrimeGrid Prime Sierpiński Problem|Prime Sierpiński Problem]]: helping Prime Sierpiński Project solve the [[Prime Sierpiński problem]].
 
:[[PrimeGrid Prime Sierpiński Problem|Prime Sierpiński Problem]]: helping Prime Sierpiński Project solve the [[Prime Sierpiński problem]].
 
:[[PrimeGrid Sierpiński base 5|Sierpiński base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
 
:[[PrimeGrid Sierpiński base 5|Sierpiński base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
  
 
*Type Riesel:
 
*Type Riesel:
:[[PrimeGrid The Riesel Problem|The Riesel Problem]]: helping to solve the [[Riesel problem]].
+
:[[PrimeGrid The Riesel Problem|The Riesel Problem]]: helping to solve the [[Riesel problem 1|Riesel problem]].
 
:[[PrimeGrid Riesel base 5|Riesel base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
 
:[[PrimeGrid Riesel base 5|Riesel base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
  
 
*Type Fermat:
 
*Type Fermat:
:[[PrimeGrid Generalized Fermat Prime Search|Generalized Fermat Prime Search]]: searching for megaprimes of the form {{Kbn|+|1|b|2<sup>{{Vn}}</sup>}}.
+
:[[PrimeGrid Generalized Fermat Prime Search|Generalized Fermat Prime Search]]: searching for primes of the form {{Kbn|+|1|b|2<sup>{{Vn}}</sup>}}.
  
 
*Type Cullen/Woodall:
 
*Type Cullen/Woodall:
Line 30: Line 29:
 
*Others:
 
*Others:
 
:[[PrimeGrid AP27 Search|AP27 Search]]: searching for an arithmetic progression ({{V|p}}+{{V|d•n}}) that yields primes for 27 consecutive values of {{Vn}}.
 
:[[PrimeGrid AP27 Search|AP27 Search]]: searching for an arithmetic progression ({{V|p}}+{{V|d•n}}) that yields primes for 27 consecutive values of {{Vn}}.
:[[PrimeGrid Sophie Germain Search|Sophie Germain Search]]: searching for primes {{V|p}} and 2{{V|p}}+1, and twin primes {{V|p}} and {{V|p}}+2.
 
:[[PrimeGrid Wieferich and Wall-Sun-Sun Prime Search|Wieferich and Wall-Sun-Sun Prime Search]]: searching for Wieferich and Wall-Sun-Sun primes.
 
  
 
===Former projects===
 
===Former projects===
 
:[[PrimeGrid Fermat Divisor Search|Fermat Divisor Search]]: searching for large prime divisors of [[Fermat number]]s. Completed April 2021.
 
:[[PrimeGrid Fermat Divisor Search|Fermat Divisor Search]]: searching for large prime divisors of [[Fermat number]]s. Completed April 2021.
 +
:[[PrimeGrid Wieferich and Wall-Sun-Sun Prime Search|Wieferich and Wall-Sun-Sun Prime Search]]: searching for [[Wieferich prime|Wieferich]] and [[Wall-Sun-Sun prime]]s. Completed December 2022.<ref>[https://www.primegrid.com/forum_thread.php?id=10037&nowrap=true#158619 End of WW Project - 30 day notice - PrimeGrid forums]</ref>
 +
:[[PrimeGrid Proth Mega Prime Search|Proth Mega Prime Search]]: searching for primes of the form {{Kbn|+|k|2|n}}. Terminated in October 2023.
 +
:[[PrimeGrid Sophie Germain Search|Sophie Germain Search]]: searching for primes {{V|p}} and 2{{V|p}}+1, and twin primes {{V|p}} and {{V|p}}+2. Completed in December 2023.
 +
 
==References==
 
==References==
 
<references/>
 
<references/>

Latest revision as of 10:28, 26 March 2024

Overview

PrimeGrid is a distributed computing project for searching for prime numbers of world-record size. It makes use of the Berkeley Open Infrastructure for Network Computing (BOINC) platform. As of October 2020, there are about 3,300 active participants (on about 16,000 host computers) from 89 countries, reporting about 1,860 teraflops.[1]

Sub-projects

  • Type Proth:
321 Prime Search searching for mega primes of the form 3•2n±1.
27121 Prime Search searching for primes of the forms 27•2n±1 and 121•2n±1.
Proth Prime Search: searching for primes of the form k•2n+1.
Proth Prime Search Extended: searching for primes of the form k•2n+1.
  • Type Sierpiński:
Seventeen or Bust: helping to solve the Sierpiński problem.
Extended Sierpiński Problem: helping solve the Extended Sierpiński Problem.
Prime Sierpiński Problem: helping Prime Sierpiński Project solve the Prime Sierpiński problem.
Sierpiński base 5: helping to solve the Sierpiński-Riesel Base 5 Problem.
  • Type Riesel:
The Riesel Problem: helping to solve the Riesel problem.
Riesel base 5: helping to solve the Sierpiński-Riesel Base 5 Problem.
  • Type Fermat:
Generalized Fermat Prime Search: searching for primes of the form b2n+1.
  • Type Cullen/Woodall:
Cullen Prime Search: searching for mega primes of the forms n•2n+1.
Woodall Prime Search: searching for mega primes of the forms n•2n-1.
Generalized Cullen Prime Search: searching for primes of the form nbn+1.
  • Others:
AP27 Search: searching for an arithmetic progression (p+d•n) that yields primes for 27 consecutive values of n.

Former projects

Fermat Divisor Search: searching for large prime divisors of Fermat numbers. Completed April 2021.
Wieferich and Wall-Sun-Sun Prime Search: searching for Wieferich and Wall-Sun-Sun primes. Completed December 2022.[2]
Proth Mega Prime Search: searching for primes of the form k•2n+1. Terminated in October 2023.
Sophie Germain Search: searching for primes p and 2p+1, and twin primes p and p+2. Completed in December 2023.

References

External links

PrimeGrid
Projects