Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Riesel problem 1"
(f17 done) |
(Another k eliminated by Ryan Propper (count will be updated once last assignments are finished by PrimeGrid and multi-reservation is removed)) |
||
(29 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | The '''Riesel problem''' | + | {{DISPLAYTITLE:Riesel problem, {{Kbn|-|k|2|n}}, {{Vk}} < {{Num|509203}}}} |
+ | The '''Riesel problem''' involves determining the smallest [[Riesel number]]. | ||
==Explanations== | ==Explanations== | ||
− | In 1956, [[Hans Riesel]] showed that there are an infinite number of integers | + | In 1956, [[Hans Riesel]] showed that there are an infinite number of integers {{Vk}} such that {{Kbn|k|2|n}} is not prime for any integer {{Vn}}. He showed that the number {{Vk}} = ''{{Num|509203}}'' has this property. |
− | It is conjectured that this | + | It is conjectured that this {{Vk}} is the smallest such number that has this property. To prove this, it suffices to show that there exists a value {{Vn}} such that {{Kbn|k|2|n}} is prime for each {{Vk}} < {{Num|509203}}. |
− | Currently there are '''{{#expr:{{PAGESINCATEGORY: | + | Currently, there are '''{{#expr:{{PAGESINCATEGORY:Riesel problem 1|pages|R}}-2}}''' {{Vk}}-values smaller than {{Num|509203}} that have no known prime. These are reserved by the [[PrimeGrid The Riesel Problem|PrimeGrid Riesel Problem]] search. |
==Frequencies== | ==Frequencies== | ||
===Definition=== | ===Definition=== | ||
− | Let | + | Let {{V|f<sub>m</sub>}} define the number of {{Vk}}-values ({{Vk}} < {{Num|509203}}, odd {{Vk}}, {{Num|254601}} candidates) with a first prime of {{Kbn|k|2|n}} with {{Vn}} in the interval 2<sup>{{V|m}}</sup> ≤ {{Vn}} < 2<sup>{{V|m}}+1</sup>. <ref>[http://www.prothsearch.com/rieselprob.html Riesel problem] by [[Wilfrid Keller]]</ref> |
===Data table=== | ===Data table=== | ||
− | The following table shows the current available | + | The following table shows the current available {{Vk}}-values in this Wiki and the targeted values shown by W.Keller for any {{V|m}} ≤ 23. |
− | :<div style="width:4em | + | :<div class="color-Done" style="width:4em; display:inline-block;"> </div> : completely included in {{SITENAME}} |
{| class="wikitable" style="text-align:right;" | {| class="wikitable" style="text-align:right;" | ||
− | ! | + | |+First primes for odd Riesel {{Vk}}-values < {{Num|509203}}<br>by power-of-two range |
+ | !{{V|m}}!!{{Vn}}<sub>min</sub>!!{{Vn}}<sub>max</sub>!!remain!!current!!target | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals0|0]] |
+ | | 1 || 1 || {{Num|254601}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals0|pages|R}}}} || {{Num|39867}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals1|1]] |
+ | | 2 || 3 || {{Num|214734}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals1|pages|R}}}} || {{Num|59460}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals2|2]] |
+ | | 4 || 7 || {{Num|155274}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals2|pages|R}}}} || {{Num|62311}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals3|3]] |
+ | | 8 || 15 || {{Num|92963}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals3|pages|R}}}} || {{Num|45177}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals4|4]] |
+ | | 16 || 31 || {{Num|47786}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals4|pages|R}}}} || {{Num|24478}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals5|5]] |
+ | | 32 || 63 || {{Num|23308}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals5|pages|R}}}} || {{Num|11668}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals6|6]] |
+ | | 64 || 127 || {{Num|11640}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals6|pages|R}}}} || {{Num|5360}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals7|7]] |
+ | | 128 || 255 || {{Num|6280}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals7|pages|R}}}} || {{Num|2728}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals8|8]] |
+ | | 256 || 511 || {{Num|3552}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals8|pages|R}}}} || {{Num|1337}} | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals9|9]] |
+ | | 512 || {{Num|1023}} || {{Num|2215}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals9|pages|R}}}} || 785 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals10|10]] |
+ | | {{Num|1024}} || {{Num|2047}} || {{Num|1430}} || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals10|pages|R}}}} || 467 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals11|11]] |
+ | | {{Num|2048}} || {{Num|4095}} || 963 || {{Num|{{PAGESINCATEGORY:Riesel 2 1Intervals11|pages|R}}}} || 289 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals12|12]] |
+ | | {{Num|4096}} || {{Num|8191}} || 674 || class="color-Done" | 191 || 191 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals13|13]] |
+ | | {{Num|8192}} || {{Num|16383}} || 483 || class="color-Done" | 125 || 125 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals14|14]] |
+ | | {{Num|16384}} || {{Num|32767}} || 358 || class="color-Done" | 87 || 87 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals15|15]] |
+ | | {{Num|32768}} || {{Num|65535}} || 271 || class="color-Done" | 62 || 62 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals16|16]] |
+ | | {{Num|65536}} || {{Num|131071}} || 209 || class="color-Done" | 38 || 38 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals17|17]] |
+ | | {{Num|131072}} || {{Num|262143}} || 171 || class="color-Done" | 35 || 35 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals18|18]] |
+ | | {{Num|262144}} || {{Num|524287}} || 136 || class="color-Done" | 25 || 25 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals19|19]] |
+ | | {{Num|524288}} || {{Num|1048575}} || 111 || class="color-Done" | 22 || 22 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals20|20]] |
+ | | {{Num|1048576}} || {{Num|2097151}} || 89 || class="color-Done" | 18 || 18 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals21|21]] |
+ | | {{Num|2097152}} || {{Num|4194303}} || 71 || class="color-Done" | 13 || 13 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals22|22]] |
+ | | {{Num|4194304}} || {{Num|8388607}} || 58 || class="color-Done" | 8 || 8 | ||
|- | |- | ||
− | | [[:Category:Riesel | + | ! scope="row" | [[:Category:Riesel 2 1Intervals23|23]] |
+ | | {{Num|8388608}} || {{Num|16777215}} || 50 || {{PAGESINCATEGORY:Riesel 2 1Intervals23|pages|R}} || ≥ {{PAGESINCATEGORY:Riesel 2 1Intervals23|pages|R}} | ||
|- | |- | ||
− | | [[:Category: | + | ! scope="row" | [[:Category:Riesel 2 1Intervals24|24]] |
+ | | {{Num|16777216}} || {{Num|33554431}} || ≤ 43 || {{PAGESINCATEGORY:Riesel 2 1Intervals24|pages|R}} || ≥ {{PAGESINCATEGORY:Riesel 2 1Intervals24|pages|R}} | ||
+ | |- | ||
+ | ! scope="row" | [[:Category:Riesel problem 1|unknown]] | ||
+ | | {{Num|33554432}} || ∞ || {{#expr:{{PAGESINCATEGORY:Riesel problem 1|pages|R}}-2}} || class="color-Done" | 0 || {{#expr:{{PAGESINCATEGORY:Riesel problem 1|pages|R}}-2}} | ||
|} | |} | ||
+ | [[:Multi Reservation:11|Multi Reservation 11]]: '''The current {{Vn}}<sub>max</sub> = {{Num|{{Multi Reservation:11-NMax}}}} as of {{Multi Reservation:11-Date}}.''' | ||
+ | |||
+ | The {{Vk}}-values [[Riesel prime 2 2293|2293]], [[Riesel prime 2 93839|93839]], [[Riesel prime 2 97139|97139]], [[Riesel prime 2 107347|107347]], [[Riesel prime 2 192971|192971]] and [[Riesel prime 2 206039|206039]] still have missing ranges to prove the smallest {{Vn}}-value and therefore not possible to fill in more values for {{OEIS|l|A108129}}. | ||
==Notes== | ==Notes== | ||
Line 74: | Line 107: | ||
==See also== | ==See also== | ||
− | *[[PrimeGrid Riesel Problem]] | + | *[[:Multi Reservation:11|Multi Reservation]] |
+ | *[[PrimeGrid The Riesel Problem]] | ||
*[[Riesel Sieve]] | *[[Riesel Sieve]] | ||
Line 81: | Line 115: | ||
{{Navbox Riesel primes}} | {{Navbox Riesel primes}} | ||
− | [[Category: | + | [[Category:Riesel prime conjectures|1]] |
+ | [[Category:Riesel 2 1Intervals| ]] | ||
+ | [[Category:Riesel problem 1| ]] |
Latest revision as of 00:28, 25 August 2024
The Riesel problem involves determining the smallest Riesel number.
Contents
Explanations
In 1956, Hans Riesel showed that there are an infinite number of integers k such that k•2n-1 is not prime for any integer n. He showed that the number k = 509,203 has this property. It is conjectured that this k is the smallest such number that has this property. To prove this, it suffices to show that there exists a value n such that k•2n-1 is prime for each k < 509,203.
Currently, there are 41 k-values smaller than 509,203 that have no known prime. These are reserved by the PrimeGrid Riesel Problem search.
Frequencies
Definition
Let fm define the number of k-values (k < 509,203, odd k, 254,601 candidates) with a first prime of k•2n-1 with n in the interval 2m ≤ n < 2m+1. [1]
Data table
The following table shows the current available k-values in this Wiki and the targeted values shown by W.Keller for any m ≤ 23.
m | nmin | nmax | remain | current | target |
---|---|---|---|---|---|
0 | 1 | 1 | 254,601 | 533 | 39,867 |
1 | 2 | 3 | 214,734 | 628 | 59,460 |
2 | 4 | 7 | 155,274 | 490 | 62,311 |
3 | 8 | 15 | 92,963 | 304 | 45,177 |
4 | 16 | 31 | 47,786 | 139 | 24,478 |
5 | 32 | 63 | 23,308 | 64 | 11,668 |
6 | 64 | 127 | 11,640 | 35 | 5,360 |
7 | 128 | 255 | 6,280 | 32 | 2,728 |
8 | 256 | 511 | 3,552 | 19 | 1,337 |
9 | 512 | 1,023 | 2,215 | 23 | 785 |
10 | 1,024 | 2,047 | 1,430 | 89 | 467 |
11 | 2,048 | 4,095 | 963 | 44 | 289 |
12 | 4,096 | 8,191 | 674 | 191 | 191 |
13 | 8,192 | 16,383 | 483 | 125 | 125 |
14 | 16,384 | 32,767 | 358 | 87 | 87 |
15 | 32,768 | 65,535 | 271 | 62 | 62 |
16 | 65,536 | 131,071 | 209 | 38 | 38 |
17 | 131,072 | 262,143 | 171 | 35 | 35 |
18 | 262,144 | 524,287 | 136 | 25 | 25 |
19 | 524,288 | 1,048,575 | 111 | 22 | 22 |
20 | 1,048,576 | 2,097,151 | 89 | 18 | 18 |
21 | 2,097,152 | 4,194,303 | 71 | 13 | 13 |
22 | 4,194,304 | 8,388,607 | 58 | 8 | 8 |
23 | 8,388,608 | 16,777,215 | 50 | 7 | ≥ 7 |
24 | 16,777,216 | 33,554,431 | ≤ 43 | 2 | ≥ 2 |
unknown | 33,554,432 | ∞ | 41 | 0 | 41 |
Multi Reservation 11: The current nmax = 15,942,000 as of 2024-08-24.
The k-values 2293, 93839, 97139, 107347, 192971 and 206039 still have missing ranges to prove the smallest n-value and therefore not possible to fill in more values for sequence A108129 in OEIS.
Notes
See also
External links
Base = 2 : |
Miscellaneous |
Tables |
Categories |
Others |
Other categories |
Other bases |