Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Riesel problem 1"
(Using new templates) |
(n-min, n-max) |
||
Line 17: | Line 17: | ||
{| class="wikitable" style="text-align:right;" | {| class="wikitable" style="text-align:right;" | ||
− | !{{V|m}}!!remain!!current!!target | + | !{{V|m}}!!{{Vn}}<sub>min</sub>!!{{Vn}}<sub>max</sub>!!remain!!current!!target |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f0|0]] || {{Num|254601}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f0|pages|R}}}} || {{Num|39867}} | + | | [[:Category:Riesel prime riesel f0|0]] || 1 || 1 || {{Num|254601}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f0|pages|R}}}} || {{Num|39867}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f1|1]] || {{Num|214734}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f1|pages|R}}}} || {{Num|59460}} | + | | [[:Category:Riesel prime riesel f1|1]] || 2 || 3 || {{Num|214734}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f1|pages|R}}}} || {{Num|59460}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f2|2]] || {{Num|155274}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f2|pages|R}}}} || {{Num|62311}} | + | | [[:Category:Riesel prime riesel f2|2]] || 4 || 7 || {{Num|155274}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f2|pages|R}}}} || {{Num|62311}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f3|3]] || {{Num|92963}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f3|pages|R}}}} || {{Num|45177}} | + | | [[:Category:Riesel prime riesel f3|3]] || 8 || 15 || {{Num|92963}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f3|pages|R}}}} || {{Num|45177}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f4|4]] || {{Num|47786}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f4|pages|R}}}} || {{Num|24478}} | + | | [[:Category:Riesel prime riesel f4|4]] || 16 || 31 || {{Num|47786}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f4|pages|R}}}} || {{Num|24478}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f5|5]] || {{Num|23308}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f5|pages|R}}}} || {{Num|11668}} | + | | [[:Category:Riesel prime riesel f5|5]] || 32 || 63 || {{Num|23308}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f5|pages|R}}}} || {{Num|11668}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f6|6]] || {{Num|11640}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f6|pages|R}}}} || {{Num|5360}} | + | | [[:Category:Riesel prime riesel f6|6]] || 64 || 127 || {{Num|11640}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f6|pages|R}}}} || {{Num|5360}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f7|7]] || {{Num|6280}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f7|pages|R}}}} || {{Num|2728}} | + | | [[:Category:Riesel prime riesel f7|7]] || 128 || 255 || {{Num|6280}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f7|pages|R}}}} || {{Num|2728}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f8|8]] || {{Num|3552}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f8|pages|R}}}} || {{Num|1337}} | + | | [[:Category:Riesel prime riesel f8|8]] || 256 || 511 || {{Num|3552}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f8|pages|R}}}} || {{Num|1337}} |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f9|9]] || {{Num|2215}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f9|pages|R}}}} || 785 | + | | [[:Category:Riesel prime riesel f9|9]] || 512 || {{Num|1023}} || {{Num|2215}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f9|pages|R}}}} || 785 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f10|10]] || {{Num|1430}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f10|pages|R}}}} || 467 | + | | [[:Category:Riesel prime riesel f10|10]] || {{Num|1024}} || {{Num|2047}} || {{Num|1430}} || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f10|pages|R}}}} || 467 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f11|11]] || 963 || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f11|pages|R}}}} || 289 | + | | [[:Category:Riesel prime riesel f11|11]] || {{Num|2048}} || {{Num|4095}} || 963 || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f11|pages|R}}}} || 289 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f12|12]] || 674 || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f12|pages|R}}}} || 191 | + | | [[:Category:Riesel prime riesel f12|12]] || {{Num|4096}} || {{Num|8191}} || 674 || {{Num|{{PAGESINCATEGORY:Riesel prime riesel f12|pages|R}}}} || 191 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f13|13]] || 483 || style="width:4em; background:PaleGreen; | 125 || 125 | + | | [[:Category:Riesel prime riesel f13|13]] || {{Num|8192}} || {{Num|16383}} || 483 || style="width:4em; background:PaleGreen; | 125 || 125 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f14|14]] || 358 || style="width:4em; background:PaleGreen; | 87 || 87 | + | | [[:Category:Riesel prime riesel f14|14]] || {{Num|16384}} || {{Num|32767}} || 358 || style="width:4em; background:PaleGreen; | 87 || 87 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f15|15]] || 271 || style="width:4em; background:PaleGreen; | 62 || 62 | + | | [[:Category:Riesel prime riesel f15|15]] || {{Num|32768}} || {{Num|65535}} || 271 || style="width:4em; background:PaleGreen; | 62 || 62 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f16|16]] || 209 || style="width:4em; background:PaleGreen; | 38 || 38 | + | | [[:Category:Riesel prime riesel f16|16]] || {{Num|65536}} || {{Num|131071}} || 209 || style="width:4em; background:PaleGreen; | 38 || 38 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f17|17]] || 171 || style="width:4em; background:PaleGreen; | 35 || 35 | + | | [[:Category:Riesel prime riesel f17|17]] || {{Num|131072}} || {{Num|262143}} || 171 || style="width:4em; background:PaleGreen; | 35 || 35 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f18|18]] || 136 || style="width:4em; background:PaleGreen; | 25 || 25 | + | | [[:Category:Riesel prime riesel f18|18]] || {{Num|262144}} || {{Num|524287}} || 136 || style="width:4em; background:PaleGreen; | 25 || 25 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f19|19]] || 111 || style="width:4em; background:PaleGreen; | 22 || 22 | + | | [[:Category:Riesel prime riesel f19|19]] || {{Num|524288}} || {{Num|1048575}} || 111 || style="width:4em; background:PaleGreen; | 22 || 22 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f20|20]] || 89 || style="width:4em; background:PaleGreen; | 18 || 18 | + | | [[:Category:Riesel prime riesel f20|20]] || {{Num|1048576}} || {{Num|2097151}} || 89 || style="width:4em; background:PaleGreen; | 18 || 18 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f21|21]] || 71 || style="width:4em; background:PaleGreen; | 13 || 13 | + | | [[:Category:Riesel prime riesel f21|21]] || {{Num|2097152}} || {{Num|4194303}} || 71 || style="width:4em; background:PaleGreen; | 13 || 13 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f22|22]] || 58 || style="width:4em; background:PaleGreen; | 8 || 8 | + | | [[:Category:Riesel prime riesel f22|22]] || {{Num|4194304}} || {{Num|8388607}} || 58 || style="width:4em; background:PaleGreen; | 8 || 8 |
|- | |- | ||
− | | [[:Category:Riesel prime riesel f23|23]] || 50 || style="width:4em; background:PaleGreen; | 1 || ≥ 1 | + | | [[:Category:Riesel prime riesel f23|23]] || {{Num|8388608}} || {{Num|16777215}} || 50 || style="width:4em; background:PaleGreen; | 1 || ≥ 1 |
|- | |- | ||
− | | [[:Category:PrimeGrid Riesel Problem|unknown]] || 49 || style="width:4em; background:PaleGreen; | {{Num|{{#expr:{{PAGESINCATEGORY:PrimeGrid Riesel Problem|pages|R}}-1}}}} || 0 | + | | [[:Category:PrimeGrid Riesel Problem|unknown]] || {{Num|16777216}} || ∞ || 49 || style="width:4em; background:PaleGreen; | {{Num|{{#expr:{{PAGESINCATEGORY:PrimeGrid Riesel Problem|pages|R}}-1}}}} || 0 |
|} | |} | ||
Revision as of 12:51, 22 September 2020
The Riesel problem involves determining the smallest Riesel number.
Contents
Explanations
In 1956, Hans Riesel showed that there are an infinite number of integers k such that k•2n-1 is not prime for any integer n. He showed that the number k = 509,203 has this property. It is conjectured that this k is the smallest such number that has this property. To prove this, it suffices to show that there exists a value n such that k•2n-1 is prime for each k < 509,203.
Currently, there are -1 k-values smaller than 509,203 that have no known prime. These are reserved by the PrimeGrid Riesel Problem search.
Frequencies
Definition
Let fm define the number of k-values (k < 509,203, odd k, 254,601 candidates) with a first prime of k•2n-1 with n in the interval 2m ≤ n < 2m+1 [1].
Data table
The following table shows the current available k-values in this Wiki and the targeted values shown by W.Keller for any m ≤ 23.
m | nmin | nmax | remain | current | target |
---|---|---|---|---|---|
0 | 1 | 1 | 254,601 | 0 | 39,867 |
1 | 2 | 3 | 214,734 | 0 | 59,460 |
2 | 4 | 7 | 155,274 | 0 | 62,311 |
3 | 8 | 15 | 92,963 | 0 | 45,177 |
4 | 16 | 31 | 47,786 | 0 | 24,478 |
5 | 32 | 63 | 23,308 | 0 | 11,668 |
6 | 64 | 127 | 11,640 | 0 | 5,360 |
7 | 128 | 255 | 6,280 | 0 | 2,728 |
8 | 256 | 511 | 3,552 | 0 | 1,337 |
9 | 512 | 1,023 | 2,215 | 0 | 785 |
10 | 1,024 | 2,047 | 1,430 | 0 | 467 |
11 | 2,048 | 4,095 | 963 | 0 | 289 |
12 | 4,096 | 8,191 | 674 | 0 | 191 |
13 | 8,192 | 16,383 | 483 | 125 | 125 |
14 | 16,384 | 32,767 | 358 | 87 | 87 |
15 | 32,768 | 65,535 | 271 | 62 | 62 |
16 | 65,536 | 131,071 | 209 | 38 | 38 |
17 | 131,072 | 262,143 | 171 | 35 | 35 |
18 | 262,144 | 524,287 | 136 | 25 | 25 |
19 | 524,288 | 1,048,575 | 111 | 22 | 22 |
20 | 1,048,576 | 2,097,151 | 89 | 18 | 18 |
21 | 2,097,152 | 4,194,303 | 71 | 13 | 13 |
22 | 4,194,304 | 8,388,607 | 58 | 8 | 8 |
23 | 8,388,608 | 16,777,215 | 50 | 1 | ≥ 1 |
unknown | 16,777,216 | ∞ | 49 | -1 | 0 |
Notes
See also
External links
Base = 2 : |
Miscellaneous |
Tables |
Categories |
Others |
Other categories |
Other bases |