Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3).
Navigation
Topics Help • Register • News • History • How to • Sequences statistics • Template prototypes

Difference between revisions of "PrimeGrid"

From Prime-Wiki
Jump to: navigation, search
m
m
Line 15: Line 15:
 
:[[PrimeGrid Prime Sierpiński Problem|Prime Sierpiński Problem]]: helping Prime Sierpiński Project solve the [[Prime Sierpiński problem]].
 
:[[PrimeGrid Prime Sierpiński Problem|Prime Sierpiński Problem]]: helping Prime Sierpiński Project solve the [[Prime Sierpiński problem]].
 
:[[PrimeGrid Sierpiński base 5|Sierpiński base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
 
:[[PrimeGrid Sierpiński base 5|Sierpiński base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
:[[PrimeGrid Riesel base 5|Riesel base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
 
  
 
*Type Riesel:
 
*Type Riesel:
 
:[[PrimeGrid The Riesel Problem|The Riesel Problem]]: helping to solve the [[Riesel problem]].
 
:[[PrimeGrid The Riesel Problem|The Riesel Problem]]: helping to solve the [[Riesel problem]].
 +
:[[PrimeGrid Riesel base 5|Riesel base 5]]: helping to solve the [[Sierpiński-Riesel Base 5]] Problem.
  
 
*Type Fermat:
 
*Type Fermat:

Revision as of 13:23, 13 August 2021

Overview

PrimeGrid is a distributed computing project for searching for prime numbers of world-record size. It makes use of the Berkeley Open Infrastructure for Network Computing (BOINC) platform. As of October 2020, there are about 3,300 active participants (on about 16,000 host computers) from 89 countries, reporting about 1,860 teraflops.[1]

Sub-projects

  • Type Proth:
321 Prime Search searching for mega primes of the form 3•2n±1.
27121 Prime Search searching for primes of the forms 27•2n±1 and 121•2n±1.
Proth Prime Search: searching for primes of the form k•2n+1.
Proth Prime Search Extended: searching for primes of the form k•2n+1.
Proth Mega Prime Search: searching for primes of the form k•2n+1.
  • Type Sierpiński:
Seventeen or Bust: helping to solve the Sierpiński problem.
Extended Sierpiński Project: helping solve the Extended Sierpiński Problem.
Prime Sierpiński Problem: helping Prime Sierpiński Project solve the Prime Sierpiński problem.
Sierpiński base 5: helping to solve the Sierpiński-Riesel Base 5 Problem.
  • Type Riesel:
The Riesel Problem: helping to solve the Riesel problem.
Riesel base 5: helping to solve the Sierpiński-Riesel Base 5 Problem.
  • Type Fermat:
Generalized Fermat Prime Search: searching for megaprimes of the form b2n+1.
Fermat Divisor Search: searching for large prime divisors of Fermat numbers.
  • Type Cullen/Woodall:
Cullen Prime Search: searching for mega primes of the forms n•2n+1.
Woodall Prime Search: searching for mega primes of the forms n•2n-1.
Generalized Cullen Prime Search: searching for primes of the form nbn+1.
  • Others:
AP27 Search: searching for an arithmetic progression (p+dn) that yields primes for 27 consecutive values of n.
Sophie Germain Search: searching for primes p and 2p+1, and twin primes p and p+2.

References

External links

Projects