Currently there may be errors shown on top of a page, because of a missing Wiki update (PHP version and extension DPL3). |
Navigation
Topics | Help • Register • News • History • How to • Sequences statistics • Template prototypes |
Difference between revisions of "Riesel prime 2 1"
(updates) |
(Adding M52) |
||
Line 2: | Line 2: | ||
|Rk=1 | |Rk=1 | ||
|Rb=2 | |Rb=2 | ||
− | |RCount= | + | |RCount=52 |
|RNash=925 | |RNash=925 | ||
− | |RMaxn= | + | |RMaxn=124399361 |
− | |RDate=2024- | + | |RDate=2024-10-21 |
|RReserved=GIMPS | |RReserved=GIMPS | ||
|RNlist= | |RNlist= | ||
Line 59: | Line 59: | ||
77232917;124104;C:'''[[M50]]''' | 77232917;124104;C:'''[[M50]]''' | ||
82589933;125874;C:'''[[M51]]''' | 82589933;125874;C:'''[[M51]]''' | ||
− | |RRemarks=For this {{Vk}}-value these are the [[Mersenne prime]]s. All exponents {{Vn}} < {{Num| | + | 136279841;138668;C:'''[[M52]]''' |
+ | |RRemarks=For this {{Vk}}-value these are the [[Mersenne prime]]s. All exponents {{Vn}} < {{Num|69369389}} have been [https://www.mersenne.org/report_milestones/ verified].<br>The {{OEIS|l|A000043}}<br>See also {{NWi|MM|2|n}} | ||
}} | }} |
Revision as of 00:50, 22 October 2024
Reserved! This sequence is currently reserved by: GIMPS |
Current data
|
|
Remarks : |
For this k-value these are the Mersenne primes. All exponents n < 69,369,389 have been verified. The sequence A000043 in OEIS See also Williams 2n-1 |
Notes
- Jump up ↑ Sophie Germain n=2, Twin n=2, M1, Near Woodall 2•21-1, Near Woodall 1•22-1, Woodall 41-1
- Jump up ↑ Woodall, M2, Woodall 2•22-1, Woodall 81-1
- Jump up ↑ M3, Near Woodall 4•23-1, Woodall 2•42-1, Woodall 321-1
- Jump up ↑ M4, Near Woodall 4•25-1, Woodall 2•82-1, Woodall 1281-1
- Jump up ↑ M5, Woodall 2•642-1, Woodall 81921-1
- Jump up ↑ M6, Woodall 1310721-1
- Jump up ↑ M7, Near Woodall 16•215-1, Woodall 2•5122-1, Woodall 8•48-1, Woodall 2•5122-1, Woodall 5242881-1
- Jump up ↑ M8, Woodall 2•327682-1
- Jump up ↑ M9
- Jump up ↑ M10
- Jump up ↑ M11, Woodall 8•81928-1
- Jump up ↑ M12
- Jump up ↑ Woodall, M13, Woodall 512•2512-1
- Jump up ↑ M14
- Jump up ↑ M15
- Jump up ↑ M16
- Jump up ↑ M17
- Jump up ↑ M18
- Jump up ↑ M19
- Jump up ↑ M20
- Jump up ↑ M21
- Jump up ↑ M22
- Jump up ↑ M23
- Jump up ↑ M24
- Jump up ↑ M25
- Jump up ↑ M26
- Jump up ↑ M27
- Jump up ↑ M28
- Jump up ↑ M29
- Jump up ↑ M30
- Jump up ↑ M31
- Jump up ↑ M32
- Jump up ↑ M33
- Jump up ↑ M34
- Jump up ↑ M35
- Jump up ↑ M36
- Jump up ↑ M37
- Jump up ↑ M38
- Jump up ↑ M39
- Jump up ↑ M40
- Jump up ↑ M41
- Jump up ↑ M42
- Jump up ↑ M43
- Jump up ↑ M44
- Jump up ↑ M45
- Jump up ↑ M46
- Jump up ↑ M47
- Jump up ↑ M48
- Jump up ↑ M49
- Jump up ↑ M50
- Jump up ↑ M51
- Jump up ↑ M52