The 4th Riesel problem involves determining the smallest Riesel numbers k•2n-1 for 777,149 < k < 790,841, the third and fourth Riesel k-values without any possible primes.
: completely included in Prime-Wiki
m |
nmin |
nmax |
remain |
current |
target
|
0 |
1 |
1 |
6,845 |
0 |
957
|
1 |
2 |
3 |
5,888 |
1 |
1,472
|
2 |
4 |
7 |
4,416 |
2 |
1,648
|
3 |
8 |
15 |
2,768 |
3 |
1,276
|
4 |
16 |
31 |
1,492 |
2 |
769
|
5 |
32 |
63 |
723 |
0 |
352
|
6 |
64 |
127 |
371 |
0 |
171
|
7 |
128 |
255 |
200 |
0 |
84
|
8 |
256 |
511 |
116 |
0 |
39
|
9 |
512 |
1,023 |
77 |
0 |
37
|
10 |
1,024 |
2,047 |
40 |
11 |
11
|
11 |
2,048 |
4,095 |
29 |
12 |
12
|
12 |
4,096 |
8,191 |
17 |
5 |
5
|
13 |
8,192 |
16,383 |
12 |
2 |
2
|
14 |
16,384 |
32,767 |
10 |
2 |
2
|
15 |
32,768 |
65,535 |
8 |
3 |
3
|
16 |
65,536 |
131,071 |
5 |
1 |
1
|
17 |
131,072 |
262,143 |
4 |
1 |
1
|
18 |
262,144 |
524,287 |
3 |
2 |
2
|
19 |
524,288 |
1,048,575 |
1 |
0 |
≥ 0
|
unknown |
1,048,576 |
∞ |
1 |
0 |
1
|