The 3rd Riesel problem involves determining the smallest Riesel numbers k•2n-1 for 762701 < k < 777149, the second and third Riesel k-values without any possible primes.
: completely included in Prime-Wiki
m |
nmin |
nmax |
remain |
current |
target
|
0 |
1 |
1 |
7,223 |
0 |
1,014
|
1 |
2 |
3 |
6,209 |
4 |
1,552
|
2 |
4 |
7 |
4,659 |
2 |
1,746
|
3 |
8 |
15 |
2,911 |
4 |
1,357
|
4 |
16 |
31 |
1,554 |
2 |
803
|
5 |
32 |
63 |
751 |
0 |
380
|
6 |
64 |
127 |
371 |
0 |
168
|
7 |
128 |
255 |
203 |
0 |
88
|
8 |
256 |
511 |
115 |
0 |
50
|
9 |
512 |
1,023 |
65 |
2 |
29
|
10 |
1,024 |
2,047 |
36 |
7 |
7
|
11 |
2,048 |
4,095 |
29 |
6 |
6
|
12 |
4,096 |
8,191 |
23 |
6 |
6
|
13 |
8,192 |
16,383 |
17 |
2 |
2
|
14 |
16,384 |
32,767 |
15 |
3 |
3
|
15 |
32,768 |
65,535 |
12 |
2 |
2
|
16 |
65,536 |
131,071 |
10 |
3 |
3
|
17 |
131,072 |
262,143 |
7 |
2 |
2
|
18 |
262,144 |
524,287 |
? |
0 |
≥ 0
|
unknown |
524,288 |
∞ |
-1 |
0 |
-1
|