Home | ![]() |
Home | ![]() |
History | ![]() |
History | ![]() |
Definitions | ![]() |
Definitions | ![]() |
Downloads | ![]() |
Downloads | ![]() |
ToDo | ![]() |
ToDo | ![]() |
Missing Info | ![]() |
Missing Info | ![]() |
Glossary | ![]() |
Glossary | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
104 < k < 105 | ![]() |
104 < k < 105 | ![]() |
105 < k < 106 | ![]() |
105 < k < 106 | ![]() |
106 < k < 107 | ![]() |
106 < k < 107 | ![]() |
107 < k < 108 | ![]() |
107 < k < 108 | ![]() |
108 < k < 109 | ![]() |
108 < k < 109 | ![]() |
109 < k < 1010 | ![]() |
109 < k < 1010 | ![]() |
1010 < k < Infin. | ![]() |
1010 < k < Infin. | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Constant-n search | ![]() |
Constant-n search | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Status k < 50 | ![]() |
Status k < 50 | ![]() |
Status k < 300 | ![]() |
Status k < 300 | ![]() |
Status 300 <k< 1200 | ![]() |
Status 300 <k< 1200 | ![]() |
k = 5 - 62.04% | ![]() |
k = 5 - 62.04% | ![]() |
k = 15 - 58.20% | ![]() |
k = 15 - 58.20% | ![]() |
k = 17 - 67.80% | ![]() |
k = 17 - 67.80% | ![]() |
k = 65 - Done | ![]() |
k = 65 - Done | ![]() |
k = 105 - 48.38% | ![]() |
k = 105 - 48.38% | ![]() |
k = 125 - Done | ![]() |
k = 125 - Done | ![]() |
9 k's - Done | ![]() |
9 k's - Done | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #7 - ?% | ![]() |
Drive #7 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #11 - .% | ![]() |
Drive #11 - .% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #3 - % | ![]() |
MBitDrive #3 - % | ![]() |
Overview | ![]() |
Overview | ![]() |
All Drives | ![]() |
All Drives | ![]() |
Drives | ![]() |
Drives | ![]() |
Mini-Drives | ![]() |
Mini-Drives | ![]() |
Races | ![]() |
Races | ![]() |
Efforts | ![]() |
Efforts | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Race #1 | ![]() |
Race #1 | ![]() |
Race #2 | ![]() |
Race #2 | ![]() |
Race #3 | ![]() |
Race #3 | ![]() |
Race #4 | ![]() |
Race #4 | ![]() |
Race #5 | ![]() |
Race #5 | ![]() |
Race #6 | ![]() |
Race #6 | ![]() |
Race #7 | ![]() |
Race #7 | ![]() |
Race #8 | ![]() |
Race #8 | ![]() |
Race #9 | ![]() |
Race #9 | ![]() |
Mini #1 - Done | ![]() |
Mini #1 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #4 - Done | ![]() |
Mini #4 - Done | ![]() |
Mini #5 - % | ![]() |
Mini #5 - % | ![]() |
Maxi #1 - ?% | ![]() |
Maxi #1 - ?% | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 | ![]() |
Drive #4 | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #9 | ![]() |
Drive #9 | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #11 - Done | ![]() |
Drive #11 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #13 - .% | ![]() |
Drive #13 - .% | ![]() |
Drive #14 - .% | ![]() |
Drive #14 - .% | ![]() |
Section A - Done | ![]() |
Section A - Done | ![]() |
Section B - Done | ![]() |
Section B - Done | ![]() |
Section C - Done | ![]() |
Section C - Done | ![]() |
Section D - Done | ![]() |
Section D - Done | ![]() |
Drive #1 - suspended | ![]() |
Drive #1 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #3 - suspended | ![]() |
Drive #3 - suspended | ![]() |
GIMPS | ![]() |
GIMPS | ![]() |
PrimeGrid | ![]() |
PrimeGrid | ![]() |
RieselSieve | ![]() |
RieselSieve | ![]() |
15k | ![]() |
15k | ![]() |
321Search | ![]() |
321Search | ![]() |
2721 | ![]() |
2721 | ![]() |
12121 | ![]() |
12121 | ![]() |
PrimeSearch | ![]() |
PrimeSearch | ![]() |
... | ![]() |
... | ![]() |
TPS | ![]() |
TPS | ![]() |
(Near)Woodall | ![]() |
(Near)Woodall | ![]() |
Riesel | ![]() |
Riesel | ![]() |
even Riesel | ![]() |
even Riesel | ![]() |
Riesel Twin/SG | ![]() |
Riesel Twin/SG | ![]() |
Liskovets/Gallot | ![]() |
Liskovets/Gallot | ![]() |
First P-Prime k | ![]() |
First P-Prime k | ![]() |
First R-Prime k | ![]() |
First R-Prime k | ![]() |
First Twin k | ![]() |
First Twin k | ![]() |
First SG k | ![]() |
First SG k | ![]() |
Riesel-Payam | ![]() |
Riesel-Payam | ![]() |
... | ![]() |
... | ![]() |
PRPnet / LLRnet servers | ![]() |
PRPnet / LLRnet servers | ![]() |
Introduction | ![]() |
Introduction | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Records | ![]() |
Records | ![]() |
Table 000k | ![]() |
Table 000k | ![]() |
Table 100k | ![]() |
Table 100k | ![]() |
Table 200k | ![]() |
Table 200k | ![]() |
Table 300k | ![]() |
Table 300k | ![]() |
Table 400k | ![]() |
Table 400k | ![]() |
Table 500k | ![]() |
Table 500k | ![]() |
Table 600k | ![]() |
Table 600k | ![]() |
Table 700k | ![]() |
Table 700k | ![]() |
Table 800k | ![]() |
Table 800k | ![]() |
Table 900k | ![]() |
Table 900k | ![]() |
Table Others | ![]() |
Table Others | ![]() |
... | ![]() |
... | ![]() |
All Open | ![]() |
All Open | ![]() |
Home Prime Overview | ![]() |
Home Prime Overview | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 16 | ![]() |
Home Prime Base 16 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Euclid-Mullin seq. | ![]() |
Euclid-Mullin seq. | ![]() |
CRUS Table | ![]() |
CRUS Table | ![]() |
General. Fermat | ![]() |
General. Fermat | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b-1 | ![]() |
Primes k*b^b-1 | ![]() |
Smarandache Types | ![]() |
Smarandache Types | ![]() |
OEIS A057207 | ![]() |
OEIS A057207 | ![]() |
Carol/Kynea Search | ![]() |
Carol/Kynea Search | ![]() |
Biggest Puzzles | ![]() |
Biggest Puzzles | ![]() |
Step | Comment | New Member | Size | Factorization |
---|---|---|---|---|
1 | - | 5 | 1 | 5 |
2 | - | 101 | 3 | 101 |
3 | - | 1020101 | 7 | 1020101 |
4 | - | 53 | 19 | 53 * 1613 * 12417062216309 |
5 | - | 29 | 22 | 29 * 137 * 8143721 * 92159345497 |
6 | - | 2507707213238852620996901 | 25 | 2507707213238852620996901 |
7 | - | 449 | 74 | 449 * 35122396914398722302564003045207352614202665033788020979177086308350149 |
8 | - | 13 | 79 | 13 * 433361 * 42408853 * 2272998442375593325550634821 * 5854291291251561948836681114631909089 |
9 | - | 8693 | 81 | 8693 * 779605017019728666908298397812421 * 79280351907775517992352780906664863043901117 |
10 | - | 1997 | 89 | 1997 * 20331581817877392256435956604888628337658696031506823766825470327156779391647042219033 |
11 | - | 6029 | 96 | 6029 * 324292972927126457756904837389 * 82817581004225645633612793315603300404768944310630572364040221 |
12 | - | 61 | 103 | 61 * 421 * 27409 * 2006353 * 23277479209766730941 * 179038947455955102658162802312015888733927607779928480498810584508153 |
13 | - | 3181837 | 107 | 3181837 * 745008749 * 119060790003973 * 77597466185873017961061683467526917038083822349525087640246531494771520881049 |
- | 113 | 120 | 113 * 769 * 1289 * P112 | |
15 | - | 181 | 124 | 181 * 138514308882265859244395712874082814522668489 * P78 |
16 | - | 1934689 | 128 | 1934689 * 689777819648133908581 * 540262027549967339063174033 * 780459434005578754866243298579829 * 164835339413528880793540884217597447740077 |
17 | - | 614309022531437844149335212611920/ 1470973493456817556328833988172277 |
141 | 6143090225314378441493352126119201470973493456817556328833988172277 * P74 |
18 | - | 4733 | 275 | 4733 * 362212223537 * 299753905627624397 * C242 |
19 | - | 3617 | 282 | 3617 * 35809 * 48491794229 * C263 |
20 | - | 41 | 289 | 41 * 541 * 8221 * 1533109 * 294752563068161904352469 * C251 |
21 | - | 68141 | 292 | 68141 * 208129 * 525193 * 14531633 * 304489547980049 * C255 |
22 | - | 37 | 302 | 37 * 42073 * 12444749 * 3232026541 * 18315945498259734483018246376409 * 141550254450216169209662163508966268390081 * C207 |
23 | - | 51473 | 305 | 51473 * 389391977333490546677 * C280 |
24 | - | 17 | 315 | 17 * 120807697 * C305 |
25 | - | 821 | 317 | 821 * 13093087453021 * 424386786126517 * 1119949812561848578697 * C265 |
26 | - | 598201519454797 | 323 | 598201519454797 * 7642055227061753 * 757578761141716392093121 * 48451623397663691008275317 * C243 7600 @ B1=43M |
27 | - | 157 | 352 | 157 * 3253 * 272353 * 29090353 * 1481244101 * 12340270001 * 274723084253 * 2222902298408547783332994893 * C276 |
28 | - | 9689 | 357 | 9689 * 16748808390469 * 1714269831676241869 * 3740043976814233735657 * C300 |
29 | - | 2357 | 365 | 2357 * 332676458166104413 * C344 |
30 | - | 757 | 371 | 757 * 3637 * C365 |
31 | - | 149 | 377 | 149 * 416701539071142197159624053 * C348 |
32 | - | 293 | 382 | 293 * 32377 * C375 |
33 | - | 5261 | 387 | 5261 * 5041889 * 755438707231660674269 * 172288961989695676317025695787901 * 55957674037143709075127965517562521 * P288 |
34 | - | 1774915226229214328737 | 394 | 1774915226229214328737 * 330731684607187769835445447439806793364101 * C331 |
37 | - | 233 | 436 | 233 * 32609 * 852121 * 1041824539343446037 * C406 |
38 | - | 73 | 441 | 73 * 1021 * 123341 * C431 |
39 | - | 13989077153 | 445 | 13989077153 * 609323260926053 * 1138366138998575412157 * C399 |
40 | - | 11689487473519919005062249197 | 465 | 11689487473519919005062249197 * P437 |
41 | - | 353 | 521 | 353 * 1289 * P516 |
42 | - | 4021 | 526 | 4021 * 936113 * 84655966760120993089 * 14536928343791180733949 * P475 |
43 | - | 24891406347771253321 | 534 | 24891406347771253321 * 262803353017571916006118661 * C488 (7600@B1=43M) |
44 | - | ? | 572 | C572 (7600@B1=43M) |