The Riesel-Problem for Twins and Sophie Germains
Special thanks to W.Keller for his data and corrections.
Definition :
Twins and Sophie Germains for k · 2n - 1 can only be produced by a k divisible by 3.
So there follows the question:
Exist a k (k > 1, divisible by 3) which never produce a Twin (k · 2n - 1 and k · 2n + 1 are prime)
or Sophie Germain (k · 2n - 1 and k · 2n+1-1 are prime) for any n > 0?
Conjecture 1: k = 237 is the smallest k never producing a Twin prime pair.
Conjecture 2: k = 807 is the smallest k never producing a Sophie Germain pair.
References:
Problem 49 from 'The Prime Puzzles & Problem Connection': Sierpinski-like numbers
Data :
a) no Twin pair:
W.Keller, C.Nash and T.Masser independently found this:
k = 237 is the smallest value never producing a Twin prime pair with covering set = [5, 7, 13, 17, 241].
(Others: k = 807 with cs = [5, 7, 13, 19, 37, 73] and k = 4581 with cs = [5, 7, 13, 17, 241])
There are 9 values k < 237 without Twin prime pair found so far:
111, 123, 153, 159, 171, 183, 189, 219, 225.
T.Masser searched these 9 k upto n = 700000.
The search was done up to n = 1,000,000 by RPS Team Drive 9k's.
b) no Sophie Germain pair:
W.Keller found this:
k = 807 is the smallest value never producing a Sophie Germain pair with covering set = [5, 7, 13, 19, 37, 73].
There are 32 values k < 807 without known Sophie Germain pair:
39, 183, 213, 219, 273, 279, 333, 351, 387, 393, 399, 417, 429, 471, 531, 543,
561, 567, 573, 591, 597, 603, 639, 681, 687, 693, 699, 723, 753, 759, 771, 795.
c) all Overview:
k divisible by 3 with their first Twin and Sophie Germain (n given) and search ranges.
Colors: Done / Twin not needed k > 237, but listed too / Reserved by person / Reserved by project
k | Twin | SG | max n | note |
3 | 1 | 1 | - | |
9 | 1 | never | - | no SG (k square) |
15 | 1 | 1 | - | |
21 | 1 | 1 | - | |
27 | 2 | 1 | - | |
33 | 6 | 2 | - | |
39 | 3 | - | 4.848M | M.Kwok |
45 | 2 | 1 | - | |
51 | 1 | 9 | - | |
57 | 2 | 1 | - | |
63 | 14 | 2 | - | |
69 | 1 | 4 | - | |
75 | 1 | 5 | - | |
81 | 5 | never | - | no SG (k square) |
87 | 2 | 1 | - | |
93 | 4 | 3 | - | |
99 | 1 | 4 | - | |
105 | 2 | 2 | - | |
111 | - | 2 | 3.0M | RPS |
117 | 4 | 1 | - | |
123 | - | 2 | 2.02M | RPS |
129 | 3 | 3 | - | |
135 | 1 | 9 | - | |
141 | 1 | 1 | - | |
147 | 44 | 1 | - | |
153 | - | 3 | 2.02M | RPS |
159 | - | 4 | 2.02M | RPS |
165 | 2 | 2 | - | |
171 | - | 2 | 2.02M | RPS |
177 | 12 | 12 | - | |
183 | - | - | 2.02M | RPS |
189 | - | 3 | 2.02M | RPS |
195 | 4 | 3 | - | |
201 | 3 | 9 | - | |
207 | 2 | 20 | - | |
213 | 36 | - | 1.65M | K.Wozny |
219 | - | - | 2.102M | RPS |
225 | - | never | 2.0M | no SG (k square) |
231 | 1 | 6 | - | |
237 | never | 17 | - | no Twin possible |
243 | 12 | 11 | - | |
249 | - | 8 | 2.0M | |
255 | 2 | 1 | - | |
261 | 1 | 114 | - | |
267 | 4 | 4 | - | |
273 | 2 | - | 2.0M | |
279 | - | - | 2.0M | |
285 | 1 | 7 | - | |
291 | 1553 | 29 | - | |
297 | 14 | 1 | - | |
303 | - | 6 | 2.71M | NPLB |
309 | 1 | 4 | - | |
315 | 22 | 4 | - | |
321 | 1 | 1 | - | |
327 | 4 | 1 | - | |
333 | 54 | - | 2.71M | NPLB |
339 | 3 | 7 | - | |
345 | 4 | 6 | - | |
351 | - | - | 2.0M | |
357 | 2 | 4 | - | |
363 | 2 | 2 | - | |
369 | 13 | 4 | - | |
375 | 3 | 2 | - | |
381 | 17 | 1 | - | |
387 | 28 | - | 2.0M | |
393 | - | - | 2.0M | |
399 | 11 | - | 2.0M | |
405 | 1 | 1 | - | |
411 | 1 | 13 | - | |
417 | 2 | - | 1.59M | NPLB |
423 | 8 | 22 | - | |
429 | 1 | - | 1.59M | NPLB |
435 | 4 | 13 | - | |
441 | 1 | never | - | no SG (k square) |
447 | 2 | 4 | - | |
453 | 48 | 2 | - | |
459 | 3 | 8 | - | |
465 | 6 | 5 | - | |
471 | 3 | - | 1.59M | NPLB |
477 | - | 1 | 1.59M | NPLB |
483 | 2 | 2 | - | |
489 | 5 | 3 | - | |
495 | 16 | 8 | - | |
501 | - | 2 | 1.59M | NPLB |
507 | 2 | 1 | - | |
513 | 6 | 267 | - | |
519 | 11 | 7 | - | |
525 | 1 | 1 | - | |
531 | 1 | - | 540k | NPLB |
537 | 6 | 5 | - | |
543 | - | - | 540k | NPLB |
549 | 11 | 3 | - | |
555 | 9 | 30 | - | |
561 | 7 | - | 540k | NPLB |
567 | 2 | - | 540k | NPLB |
573 | 344 | - | 540k | NPLB |
579 | - | 35 | 540k | NPLB |
585 | 2 | 2 | - | |
591 | 5 | - | 540k | NPLB |
597 | 70 | - | 540k | NPLB |
603 | 10 | - | 540k | NPLB |
609 | 19 | 3 | - | |
615 | 1 | 1 | - | |
621 | 3 | 22 | - | |
627 | 6 | 5 | - | |
633 | 32 | 42 | - | |
639 | 1 | - | 540k | NPLB |
645 | 1 | 1 | - | |
651 | 1 | 13 | - | |
657 | 58 | 29 | - | |
663 | 24 | 3 | - | |
669 | 11 | 8 | - | |
675 | 5 | 2 | - | |
681 | 31 | - | 540k | NPLB |
687 | 34 | - | 540k | NPLB |
693 | - | - | 540k | NPLB |
699 | 5 | - | 540k | NPLB |
705 | 3 | 1 | - | |
711 | 17 | 5 | - | |
717 | 12 | 4 | - | |
723 | 6 | - | 540k | NPLB |
729 | - | never | 540k | no SG (k square), NPLB |
735 | 3 | 2 | - | |
741 | 1 | 1 | - | |
747 | 6 | 8 | - | |
753 | - | - | 540k | NPLB |
759 | 17 | - | 540k | NPLB |
765 | 4 | 9 | - | |
771 | - | - | 540k | NPLB |
777 | 10 | 20 | - | |
783 | - | 3 | 540k | NPLB |
789 | - | 23 | 540k | NPLB |
795 | 3 | - | 540k | NPLB |
801 | - | 1 | 540k | NPLB |
807 | never | never | 540k | no Twin, no SG possible |