Home | ![]() |
Home | ![]() |
History | ![]() |
History | ![]() |
Definitions | ![]() |
Definitions | ![]() |
Downloads | ![]() |
Downloads | ![]() |
ToDo | ![]() |
ToDo | ![]() |
Missing Info | ![]() |
Missing Info | ![]() |
Glossary | ![]() |
Glossary | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
104 < k < 105 | ![]() |
104 < k < 105 | ![]() |
105 < k < 106 | ![]() |
105 < k < 106 | ![]() |
106 < k < 107 | ![]() |
106 < k < 107 | ![]() |
107 < k < 108 | ![]() |
107 < k < 108 | ![]() |
108 < k < 109 | ![]() |
108 < k < 109 | ![]() |
109 < k < 1010 | ![]() |
109 < k < 1010 | ![]() |
1010 < k < Infin. | ![]() |
1010 < k < Infin. | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Constant-n search | ![]() |
Constant-n search | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Status k < 50 | ![]() |
Status k < 50 | ![]() |
Status k < 300 | ![]() |
Status k < 300 | ![]() |
Status 300 <k< 1200 | ![]() |
Status 300 <k< 1200 | ![]() |
k = 5 - 62.04% | ![]() |
k = 5 - 62.04% | ![]() |
k = 15 - 58.20% | ![]() |
k = 15 - 58.20% | ![]() |
k = 17 - 67.80% | ![]() |
k = 17 - 67.80% | ![]() |
k = 65 - Done | ![]() |
k = 65 - Done | ![]() |
k = 105 - 48.38% | ![]() |
k = 105 - 48.38% | ![]() |
k = 125 - Done | ![]() |
k = 125 - Done | ![]() |
9 k's - Done | ![]() |
9 k's - Done | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #7 - ?% | ![]() |
Drive #7 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #11 - .% | ![]() |
Drive #11 - .% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #3 - % | ![]() |
MBitDrive #3 - % | ![]() |
Overview | ![]() |
Overview | ![]() |
All Drives | ![]() |
All Drives | ![]() |
Drives | ![]() |
Drives | ![]() |
Mini-Drives | ![]() |
Mini-Drives | ![]() |
Races | ![]() |
Races | ![]() |
Efforts | ![]() |
Efforts | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Race #1 | ![]() |
Race #1 | ![]() |
Race #2 | ![]() |
Race #2 | ![]() |
Race #3 | ![]() |
Race #3 | ![]() |
Race #4 | ![]() |
Race #4 | ![]() |
Race #5 | ![]() |
Race #5 | ![]() |
Race #6 | ![]() |
Race #6 | ![]() |
Race #7 | ![]() |
Race #7 | ![]() |
Race #8 | ![]() |
Race #8 | ![]() |
Race #9 | ![]() |
Race #9 | ![]() |
Mini #1 - Done | ![]() |
Mini #1 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #4 - Done | ![]() |
Mini #4 - Done | ![]() |
Mini #5 - % | ![]() |
Mini #5 - % | ![]() |
Maxi #1 - ?% | ![]() |
Maxi #1 - ?% | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 | ![]() |
Drive #4 | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #9 | ![]() |
Drive #9 | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #11 - Done | ![]() |
Drive #11 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #13 - .% | ![]() |
Drive #13 - .% | ![]() |
Drive #14 - .% | ![]() |
Drive #14 - .% | ![]() |
Section A - Done | ![]() |
Section A - Done | ![]() |
Section B - Done | ![]() |
Section B - Done | ![]() |
Section C - Done | ![]() |
Section C - Done | ![]() |
Section D - Done | ![]() |
Section D - Done | ![]() |
Drive #1 - suspended | ![]() |
Drive #1 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #3 - suspended | ![]() |
Drive #3 - suspended | ![]() |
GIMPS | ![]() |
GIMPS | ![]() |
PrimeGrid | ![]() |
PrimeGrid | ![]() |
RieselSieve | ![]() |
RieselSieve | ![]() |
15k | ![]() |
15k | ![]() |
321Search | ![]() |
321Search | ![]() |
2721 | ![]() |
2721 | ![]() |
12121 | ![]() |
12121 | ![]() |
PrimeSearch | ![]() |
PrimeSearch | ![]() |
... | ![]() |
... | ![]() |
TPS | ![]() |
TPS | ![]() |
(Near)Woodall | ![]() |
(Near)Woodall | ![]() |
Riesel | ![]() |
Riesel | ![]() |
even Riesel | ![]() |
even Riesel | ![]() |
Riesel Twin/SG | ![]() |
Riesel Twin/SG | ![]() |
Liskovets/Gallot | ![]() |
Liskovets/Gallot | ![]() |
First P-Prime k | ![]() |
First P-Prime k | ![]() |
First R-Prime k | ![]() |
First R-Prime k | ![]() |
First Twin k | ![]() |
First Twin k | ![]() |
First SG k | ![]() |
First SG k | ![]() |
Riesel-Payam | ![]() |
Riesel-Payam | ![]() |
... | ![]() |
... | ![]() |
PRPnet / LLRnet servers | ![]() |
PRPnet / LLRnet servers | ![]() |
Introduction | ![]() |
Introduction | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Records | ![]() |
Records | ![]() |
Table 000k | ![]() |
Table 000k | ![]() |
Table 100k | ![]() |
Table 100k | ![]() |
Table 200k | ![]() |
Table 200k | ![]() |
Table 300k | ![]() |
Table 300k | ![]() |
Table 400k | ![]() |
Table 400k | ![]() |
Table 500k | ![]() |
Table 500k | ![]() |
Table 600k | ![]() |
Table 600k | ![]() |
Table 700k | ![]() |
Table 700k | ![]() |
Table 800k | ![]() |
Table 800k | ![]() |
Table 900k | ![]() |
Table 900k | ![]() |
Table Others | ![]() |
Table Others | ![]() |
... | ![]() |
... | ![]() |
All Open | ![]() |
All Open | ![]() |
Home Prime Overview | ![]() |
Home Prime Overview | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 16 | ![]() |
Home Prime Base 16 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Euclid-Mullin seq. | ![]() |
Euclid-Mullin seq. | ![]() |
CRUS Table | ![]() |
CRUS Table | ![]() |
General. Fermat | ![]() |
General. Fermat | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b-1 | ![]() |
Primes k*b^b-1 | ![]() |
Smarandache Types | ![]() |
Smarandache Types | ![]() |
OEIS A057207 | ![]() |
OEIS A057207 | ![]() |
Carol/Kynea Search | ![]() |
Carol/Kynea Search | ![]() |
Biggest Puzzles | ![]() |
Biggest Puzzles | ![]() |
y | M(n) | Reserved Last editor |
Last Update | #n | Nash weight | max n/ range tested | k·2n-1 is prime for the following n's |
---|---|---|---|---|---|---|---|
3982100443 31*128454853 |
37 | K.Bonath | 2011-11-10 | 63 | 7122 | 10k | (k=174137710313940945) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 24, 29, 31, 40, 62, 86, 113, 137, 160, 164, 322, 324, 347, 357, 386, 427, 458, 557, 606, 697, 700, 850, 990, 1084, 1337, 1398, 1513, 1587, 1659, 1740, 1917, 2250, 2287, 2510, 2845, 3099, 3271, 3838, 4383, 4550, 4669, 4856, 6610, 6621, 6690, 7096, 7425, 7564, 8669, 9629, 9643 |
1029369515711 17*97*1259*495821 |
53 | K.Bonath | 2008-08-31 | 114 | 7651 | 20k | (k=2385765706875425848545) 1, 3, 6, 7, 14, 15, 18, 22, 27, 28, 29, 36, 38, 39, 43, 62, 64, 65, 72, 84, 90, 94, 105, 109, 111, 130, 145, 156, 182, 195, 234, 235, 240, 264, 319, 346, 402, 426, 435, 460, 473, 482, 514, 517, 572, 575, 580, 584, 665, 670, 765, 816, 871, 876, 882, 932, 1047, 1103, 1132, 1144, 1155, 1254, 1427, 1445, 1506, 1518, 1626, 1756, 1828, 1936, 1945, 2042, 2174, 2522, 2589, 2875, 3033, 3095, 3238, 3871, 3891, 4008, 4294, 4341, 4484, 4592, 4630, 4716, 4726, 4744, 5414, 5657, 6426, 6454, 6555, 6707, 6862, 8446, 8702, 8895, 9327, 9646, 10296, 11024, 11329, 11594, 11611, 11848, 12506, 12569, 13463, 15302, 17661, 18215 |
1212241451853 3*31*43*303136147 |
53 | K.Bonath | 2008-11-25 | 110 | 7898 | 20k | (k=2809607279156828614035) 1, 8, 14, 15, 18, 21, 22, 23, 24, 36, 45, 46, 50, 51, 53, 56, 67, 70, 72, 73, 104, 106, 110, 113, 116, 125, 138, 142, 182, 197, 198, 208, 209, 221, 231, 254, 257, 267, 268, 269, 293, 296, 300, 311, 340, 342, 353, 374, 382, 410, 411, 415, 559, 573, 627, 712, 763, 856, 915, 970, 985, 1061, 1094, 1119, 1145, 1203, 1260, 1370, 1441, 1530, 1598, 1633, 1721, 1789, 2058, 2385, 2403, 2410, 2731, 2770, 3001, 3183, 3260, 4123, 4131, 4730, 4794, 5109, 5551, 5580, 6135, 6222, 6249, 6308, 6399, 6632, 6966, 6973, 7032, 8256, 8422, 8551, 8968, 9203, 9469, 9808, 10447, 10865, 14829, 14912 |
1636889512137 3*11^2*17*193*1374379 |
53 | R.Smith | 2007-12-20 | (111) | 20k | (...) 7724 (...) | |
169160174245 5*17*1990119697 |
53 | R.Smith | (115) | 20k | (...) 8191 (...) | ||
3053018310957 3^2*34687*9779579 |
53 | R.Smith | 2007-12-20 | (99) | 10k | (...) | |
3058988541335 5*829*737994823 |
53 | R.Smith | 2007-12-20 | (99) | 10k | (...) | |
3459395798073 3^3*349*5437*67523 |
53 | R.Smith | 2007-12-23 | (99) | 10k | (...) | |
3680068181457 3*2113*580543963 |
53 | R.Smith | 2007-12-23 | (105) | 10k | (...) 7836 (...) | |
3726133257251 631*5905124021 |
53 | R.Smith | 2007-12-23 | (99) | 10k | (...) | |
3916647606303 3^2*23*71*271*397*2477 |
53 | R.Smith | 2007-12-23 | (99) | 10k | (...) | |
3995993454669 3^2*4861*91339081 |
53 | R.Smith | 2007-12-23 | (100) | 10k | (...) 9870 | |
196866927943 7^2*71*56587217 |
59 | R.Smith | (117) | 20k | (...) 6617 (...) | ||
543298716599 7349*73928251 |
59 | R.Smith | (116) | 20k | (...) 5768 (...) | ||
660288556697 7*11*4139*2071799 |
59 | R.Smith | (118) | 20k | (...) 6167 (...) | ||
189018321331 7*108023*249971 |
61 | R.Smith | (126) | 42k | (...) 7788 (...) | ||
638621868573 3^3*13*17*107025619 |
61 | P.Carmody, Sargassian | 139 | 30k 164k-233k | 2, 5, 14, 17, 21, 25, 29, 32, 33, 34, 35, 36, 37, 41, 43, 45, 47, 51, 62, 65, 75, 77, 85, 96, 128, 159, 163, 174, 192, 238, 240, 241, 249, 261, 270, 271, 272, 294, 328, 342, 365, 444, 454, 484, 485, 500, 505, 517, 540, 553, 574, 595, 623, 688, 802, 827, 850, 874, 1033, 1148, 1220, 1243, 1313, 1347, 1453, 1485, 1496, 1579, 1716, 1936, 1960, 2042, 2045, 2126, 2235, 2264, 2274, 2298, 2931, 2938, 3051, 3177, 3318, 3542, 3854, 3969, 4253, 4660, 4719, 5225, 5499, 5912, 6327, 7086, 7153, 7284, 7336, 7504, 7647, 8110, 8213, 8543, 8599, 8943, 9445, 9812, 10064, 10199, 10464, 11019, 12467, 12786, 13146, 13631, 13714, 14206, 14900, 14905, 15064, 16490, 17087, 19123, 19447, 19540, 20170, 21598, 24518, 24675, 25639, 25877, 27039, 28480, 29268, 29866 (...) 164463, 169447, 195317, 202473, 233805 | ||
1746492605077 11*9181*17293547 |
61 | R.Smith | 2008-01-27 | (102) | 10k | (...) 8014 (...) | |
1907954478839 19*433*231913757 |
61 | R.Smith | 2008-01-27 | (99) | 10k | (...) | |
1965188880093 3*1399*3691*126859 |
61 | R.Smith | 2008-01-27 | (99) | 10k | (...) | |
2002078724075 5^2*19*20399*206623 |
61 | R.Smith | 2008-01-27 | (99) | 10k | (...) | |
2183225888567 137*1223*13030217 |
61 | R.Smith | 2008-01-27 | (99) | 10k | (...) | |
2256305169303 3^2*6317*39686651 |
61 | R.Smith | 2008-01-27 | (100) | 10k | (...) 9821 | |
2319747344799 3*773249114933 |
61 | R.Smith | 2008-01-27 | (102) | 10k | (...) 9595 (...) | |
2342836014713 2342836014713 |
61 | R.Smith | 2008-01-27 | (122) | 19k | (...) 6520 (...) 19093 | |
2421745267415 5*37*79*101*1640621 |
61 | R.Smith | 2008-01-27 | (100) | 10k | (...) 9769 | |
2476995416951 11*225181401541 |
61 | R.Smith | 2008-01-27 | (100) | 10k | (...) 9951 | |
2502262772385 3*5*47*3549308897 |
61 | R.Smith | 2008-01-27 | (100) | 10k | (...) 9732 | |
2781948761147 73*17609*2164171 |
61 | R.Smith | 2008-01-27 | (100) | 10k | (...) 9271 | |
29979474409 191*6217*25247 |
67 | K.Bonath | 2008-01-29 | 129 | 8171 | 92k | 3, 6, 7, 9, 10, 15, 20, 21, 22, 23, 24, 27, 30, 36, 37, 39, 44, 46, 47, 49, 64, 73, 82, 87, 91, 100, 117, 125, 156, 175, 180, 183, 193, 197, 221, 236, 247, 267, 286, 288, 301, 306, 319, 320, 387, 430, 507, 537, 539, 544, 607, 614, 625, 658, 678, 686, 701, 717, 795, 818, 819, 860, 910, 929, 969, 1004, 1050, 1086, 1160, 1170, 1274, 1294, 1301, 1324, 1451, 1478, 1561, 1626, 1877, 1890, 2057, 2132, 2159, 2355, 2500, 2717, 2939, 2971, 3375, 3435, 3529, 3597, 3721, 4011, 4054, 4108, 4712, 5566, 5661, 5968, 8388, 9635, 9660, 10720, 11560, 12292, 12315, 13740, 13786, 15346, 17479, 20018, 26172, 27748, 36502, 38609, 39103, 40133, 44248, 47148, 52908, 57588, 58085, 59633, 59660, 60955, 69284, 70868, 74659 |
1416492589021 553549*2558929 |
67 | R.Smith | 2008-01-19 | (100) | 10k | (...) 8013 | |
1533927640019 1533927640019 |
67 | R.Smith | 2008-01-19 | (100) | 10k | (...) 9972 | |
1774116412215 3*5*7*55217*305999 |
67 | R.Smith | 2008-01-19 | (99) | 10k | (...) | |
1842913644031 17*19*467*12217591 |
67 | R.Smith | 2008-01-19 | (100) | 10k | (...) 9937 | |
1876131394595 5*43*349*25003417 |
67 | R.Smith | 2008-01-19 | (101) | 10k | (...) 8443 (...) | |
1970620879533 3*31517*20841883 |
67 | R.Smith | 2008-01-19 | (100) | 10k | (...) 9500 | |
46147358765115 3^3*5*17*2029*9910193 |
67 | E.Trice | 2011-12-25 | 146 | 8252 | 125k | (k=25790513410853719562625473025) 16, 21, 26, 28, 32, 33, 36, 37, 38, 39, 45, 54, 56, 57, 59, 60, 67, 68, 76, 86, 101, 106, 134, 135, 138, 146, 155, 157, 170, 188, 190, 209, 220, 224, 243, 255, 258, 276, 351, 353, 381, 392, 395, 416, 425, 502, 511, 564, 600, 646, 657, 671, 691, 720, 741, 790, 793, 854, 861, 869, 887, 895, 922, 926, 969, 997, 998, 1037, 1049, 1128, 1294, 1387, 1398, 1478, 1562, 1606, 1663, 1745, 1758, 2208, 2277, 2331, 2386, 2391, 2431, 2535, 2760, 2988, 3053, 3454, 3693, 4047, 4357, 4486, 4689, 5918, 5967, 6539, 6737, 6751, 6823, 6825, 6860, 7427, 7512, 7676, 8203, 8211, 8408, 8713, 10256, 10337, 10976, 11494, 12295, 14691, 14902, 16110, 16845, 17473, 19418, 24014, 25584, 29989, 30672, 31307, 34951, 38689, 38843, 41032, 41763, 45833, 53454, 54576, 62344, 73453, 74468, 75052, 77089, 81964, 83305, 95724, 105116, 112777, 116080, 120073 |
2173328761571 11*107*42197*43759 |
83 | R.Smith | (115) | 19656 | (...) 9653 (...) | ||
3595866123809 23*156342005383 |
83 | R.Smith | (117) | 19656 | (...) 9210 (...) | ||
38367867040615 5*7*331*3311857319 |
83 | R.Smith | 2008-01-15 | (103) | 10k | (...) 6920 (...) | |
61976585459877 3*11*1878078347269 |
83 | R.Smith | 2008-01-15 | (102) | 10k | (...) 8600 (...) | |
63404089076241 3^2*191*461*80009299 |
83 | R.Smith | 2008-01-15 | (101) | 10k | (...) 8159 (...) | |
159929185703 7*17*29*137*338269 |
101 | R.Smith | (114) | 20k | (...) 8646 (...) | ||
336458226173 43*811*9648101 |
107 | R.Smith | (119) | 22k | (...) 9642 (...) | ||
101532422035567 71*1879*27397*27779 |
107 | R.Smith | 2008-01-06 | (102) | 10k | (...) 9253 (...) | |
408251547745613 11*13*6607*432103213 |
107 | R.Smith | 2008-01-06 | (105) | 10k | (...) 8230 (...) | |
5071829957884753 7*409*1771508892031 |
107 | R.Smith | 2008-01-06 | (101) | 10k | (...) 8230 (...) | |
5731587575971897 1979*37307*77631649 |
107 | R.Smith | 2008-01-06 | (99) | 10k | (...) | |
5858856352434629 47*1747*71354618281 |
107 | R.Smith | 2008-01-06 | (103) | 10k | (...) 9050 (...) | |
2395773354147 3*383*2085094303 |
163 | R.Smith | 2007-07-03 | 149 | 9275 | 171379 | 14, 16, 22, 29, 37, 42, 43, 45, 50, 52, 55, 73, 87, 92, 100, 102, 103, 108, 113, 119, 126, 129, 141, 145, 146, 147, 160, 161, 169, 224, 256, 269, 275, 290, 299, 307, 314, 331, 334, 384, 388, 389, 397, 443, 462, 478, 523, 544, 562, 577, 661, 664, 699, 731, 1003, 1014, 1020, 1025, 1027, 1065, 1125, 1214, 1291, 1315, 1444, 1696, 1775, 1809, 1901, 1994, 2233, 2288, 2714, 2727, 3032, 3263, 3463, 3686, 3864, 4195, 5256, 5526, 6489, 6621, 6791, 6958, 7404, 7899, 8467, 8663, 8680, 8811, 9000, 9121, 9651, 9775, 10373, 11478, 12628, 13521, 13523, 13831, 13869, 14422, 14434, 15043, 15188, 17266, 17285, 17907, 17968, 18126, 18649, 19114, 19184, 19763, 19764, 20486, 21811, 22635, 24919, 26920, 29668, 32363, 32709, 33257, 33913, 39945, 39991, 40039, 41858, 41910, 47922, 50222, 52424, 64852, 67909, 70081, 80286, 82795, 86861, 90129, 101060, 102124, 106385, 113784, 124805, 127436, 164357 |
22544089918041953 17*107*4643*88397*30197 |
131 | R.Smith, T.Ritschel, et al. | 2014-03-25 | 216 | 8818 | 880k | (k=1480472640274704456611717878515654164205) 1, 2, 11, 14, 16, 36, 41, 52, 53, 64, 65, 73, 75, 80, 91, 124, 131, 140, 156, 158, 166, 170, 189, 194, 223, 224, 233, 240, 250, 275, 284, 288, 354, 374, 405, 478, 486, 489, 498, 500, 521, 527, 556, 562, 591, 596, 623, 642, 643, 650, 708, 802, 839, 850, 867, 883, 960, 985, 1003, 1070, 1108, 1173, 1207, 1238, 1276, 1322, 1361, 1374, 1375, 1509, 1570, 1592, 1636, 1717, 1720, 1800, 1808, 1999, 2150, 2251, 2352, 2373, 2550, 2576, 2596, 2692, 2697, 2791, 2956, 3076, 3178, 3325, 3590, 4221, 4327, 4344, 4385, 4505, 4585, 4913, 5217, 5599, 6478, 6864, 7089, 7106, 8140, 8382, 8528, 8784, 8787, 9399, 11069, 11311, 11853, 14292, 15198, 15320, 15825, 15999, 17570, 17840, 17887, 17935, 18401, 20262, 20460, 20503, 22568, 22887, 25002, 26252, 26523, 27251, 28233, 29803, 30173, 31212, 31424, 32583, 33696, 36106, 36320, 40172, 42457, 44900, 46170, 46787, 47920, 49784, 53246, 55579, 59638, 60260, 64574, 67190, 67470, 71221, 73142, 77776, 80678, 84684, 87557, 96045, 102231, 102651, 104202, 104655, 111235, 111239, 118689, 119254, 129630, 134337, 134490, 141805, 146149, 159874, 163330, 168072, 174712, 177119, 177684, 190958, 193804, 197942, 210616, 226559, 227776, 229069, 245288, 255530, 294807, 318934, 334623, 334645, 363020, 376732, 403709, 414907, 449150, 472040, 479697, 496187, 498496, 517692, 531133, 549598, 587833, 608207, 608462, 639888, 716611, 788439, (...) 834442, 1025897 |