Home | ![]() |
Home | ![]() |
History | ![]() |
History | ![]() |
Definitions | ![]() |
Definitions | ![]() |
Downloads | ![]() |
Downloads | ![]() |
ToDo | ![]() |
ToDo | ![]() |
Missing Info | ![]() |
Missing Info | ![]() |
Glossary | ![]() |
Glossary | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
104 < k < 105 | ![]() |
104 < k < 105 | ![]() |
105 < k < 106 | ![]() |
105 < k < 106 | ![]() |
106 < k < 107 | ![]() |
106 < k < 107 | ![]() |
107 < k < 108 | ![]() |
107 < k < 108 | ![]() |
108 < k < 109 | ![]() |
108 < k < 109 | ![]() |
109 < k < 1010 | ![]() |
109 < k < 1010 | ![]() |
1010 < k < Infin. | ![]() |
1010 < k < Infin. | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Condensed 10000 < k < 100000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Constant-n search | ![]() |
Constant-n search | ![]() |
k < 300 | ![]() |
k < 300 | ![]() |
300 < k < 2000 | ![]() |
300 < k < 2000 | ![]() |
2000 < k < 4000 | ![]() |
2000 < k < 4000 | ![]() |
4000 < k < 6000 | ![]() |
4000 < k < 6000 | ![]() |
6000 < k < 8000 | ![]() |
6000 < k < 8000 | ![]() |
8000 < k < 10000 | ![]() |
8000 < k < 10000 | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Status k < 50 | ![]() |
Status k < 50 | ![]() |
Status k < 300 | ![]() |
Status k < 300 | ![]() |
Status 300 <k< 1200 | ![]() |
Status 300 <k< 1200 | ![]() |
k = 5 - 62.04% | ![]() |
k = 5 - 62.04% | ![]() |
k = 15 - 58.20% | ![]() |
k = 15 - 58.20% | ![]() |
k = 17 - 67.80% | ![]() |
k = 17 - 67.80% | ![]() |
k = 65 - Done | ![]() |
k = 65 - Done | ![]() |
k = 105 - 48.38% | ![]() |
k = 105 - 48.38% | ![]() |
k = 125 - Done | ![]() |
k = 125 - Done | ![]() |
9 k's - Done | ![]() |
9 k's - Done | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #4 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #6 - 65.25% | ![]() |
Drive #7 - ?% | ![]() |
Drive #7 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #8 - ?% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #9 - 99.33% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #10 - 41.69% | ![]() |
Drive #11 - .% | ![]() |
Drive #11 - .% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #1 - ?% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #2 - 22% | ![]() |
MBitDrive #3 - % | ![]() |
MBitDrive #3 - % | ![]() |
Overview | ![]() |
Overview | ![]() |
All Drives | ![]() |
All Drives | ![]() |
Drives | ![]() |
Drives | ![]() |
Mini-Drives | ![]() |
Mini-Drives | ![]() |
Races | ![]() |
Races | ![]() |
Efforts | ![]() |
Efforts | ![]() |
... | ![]() |
... | ![]() |
Overview | ![]() |
Overview | ![]() |
Race #1 | ![]() |
Race #1 | ![]() |
Race #2 | ![]() |
Race #2 | ![]() |
Race #3 | ![]() |
Race #3 | ![]() |
Race #4 | ![]() |
Race #4 | ![]() |
Race #5 | ![]() |
Race #5 | ![]() |
Race #6 | ![]() |
Race #6 | ![]() |
Race #7 | ![]() |
Race #7 | ![]() |
Race #8 | ![]() |
Race #8 | ![]() |
Race #9 | ![]() |
Race #9 | ![]() |
Mini #1 - Done | ![]() |
Mini #1 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #2 - Done | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #3 - 38.80% | ![]() |
Mini #4 - Done | ![]() |
Mini #4 - Done | ![]() |
Mini #5 - % | ![]() |
Mini #5 - % | ![]() |
Maxi #1 - ?% | ![]() |
Maxi #1 - ?% | ![]() |
Drive #1 - Done | ![]() |
Drive #1 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #2 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #3 - Done | ![]() |
Drive #4 | ![]() |
Drive #4 | ![]() |
Drive #5 - Done | ![]() |
Drive #5 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #6 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #7 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #8 - Done | ![]() |
Drive #9 | ![]() |
Drive #9 | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #10 - 32.60% | ![]() |
Drive #11 - Done | ![]() |
Drive #11 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #12 - Done | ![]() |
Drive #13 - .% | ![]() |
Drive #13 - .% | ![]() |
Drive #14 - .% | ![]() |
Drive #14 - .% | ![]() |
Section A - Done | ![]() |
Section A - Done | ![]() |
Section B - Done | ![]() |
Section B - Done | ![]() |
Section C - Done | ![]() |
Section C - Done | ![]() |
Section D - Done | ![]() |
Section D - Done | ![]() |
Drive #1 - suspended | ![]() |
Drive #1 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #2 - suspended | ![]() |
Drive #3 - suspended | ![]() |
Drive #3 - suspended | ![]() |
GIMPS | ![]() |
GIMPS | ![]() |
PrimeGrid | ![]() |
PrimeGrid | ![]() |
RieselSieve | ![]() |
RieselSieve | ![]() |
15k | ![]() |
15k | ![]() |
321Search | ![]() |
321Search | ![]() |
2721 | ![]() |
2721 | ![]() |
12121 | ![]() |
12121 | ![]() |
PrimeSearch | ![]() |
PrimeSearch | ![]() |
... | ![]() |
... | ![]() |
TPS | ![]() |
TPS | ![]() |
(Near)Woodall | ![]() |
(Near)Woodall | ![]() |
Riesel | ![]() |
Riesel | ![]() |
even Riesel | ![]() |
even Riesel | ![]() |
Riesel Twin/SG | ![]() |
Riesel Twin/SG | ![]() |
Liskovets/Gallot | ![]() |
Liskovets/Gallot | ![]() |
First P-Prime k | ![]() |
First P-Prime k | ![]() |
First R-Prime k | ![]() |
First R-Prime k | ![]() |
First Twin k | ![]() |
First Twin k | ![]() |
First SG k | ![]() |
First SG k | ![]() |
Riesel-Payam | ![]() |
Riesel-Payam | ![]() |
... | ![]() |
... | ![]() |
PRPnet / LLRnet servers | ![]() |
PRPnet / LLRnet servers | ![]() |
Introduction | ![]() |
Introduction | ![]() |
Statistics | ![]() |
Statistics | ![]() |
Records | ![]() |
Records | ![]() |
Table 000k | ![]() |
Table 000k | ![]() |
Table 100k | ![]() |
Table 100k | ![]() |
Table 200k | ![]() |
Table 200k | ![]() |
Table 300k | ![]() |
Table 300k | ![]() |
Table 400k | ![]() |
Table 400k | ![]() |
Table 500k | ![]() |
Table 500k | ![]() |
Table 600k | ![]() |
Table 600k | ![]() |
Table 700k | ![]() |
Table 700k | ![]() |
Table 800k | ![]() |
Table 800k | ![]() |
Table 900k | ![]() |
Table 900k | ![]() |
Table Others | ![]() |
Table Others | ![]() |
... | ![]() |
... | ![]() |
All Open | ![]() |
All Open | ![]() |
Home Prime Overview | ![]() |
Home Prime Overview | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 2 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 3 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 4 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 5 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 6 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 7 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 8 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 9 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 10 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 12 | ![]() |
Home Prime Base 16 | ![]() |
Home Prime Base 16 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Inverse Home Prime Base 8 | ![]() |
Euclid-Mullin seq. | ![]() |
Euclid-Mullin seq. | ![]() |
CRUS Table | ![]() |
CRUS Table | ![]() |
General. Fermat | ![]() |
General. Fermat | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b+1 | ![]() |
Primes k*b^b-1 | ![]() |
Primes k*b^b-1 | ![]() |
Smarandache Types | ![]() |
Smarandache Types | ![]() |
OEIS A057207 | ![]() |
OEIS A057207 | ![]() |
Carol/Kynea Search | ![]() |
Carol/Kynea Search | ![]() |
Biggest Puzzles | ![]() |
Biggest Puzzles | ![]() |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 1 - |
2 2 - |
3 3 - |
4 4 - |
5 5 - |
6 6 - |
7 7 - |
8 8 - |
9 9 - |
10 11 - |
11 13 - |
12 15 - |
13 17 - |
14 19 - |
15 21 - |
16 23 - |
17 25 - |
18 27 - |
19 29 - |
20 31 - |
21 33 - |
22 35 - |
23 37 - |
24 39 - |
25 41 - |
26 43 - |
27 45 - |
28 47 - |
29 49 - |
30 51 - |
31 53 - |
32 55 - |
33 57 - |
34 59 - |
35 61 - |
36 63 - |
37 65 - |
38 67 - |
39 69 - |
40 71 - |
41 73 - |
42 75 - |
43 77 - |
44 79 - |
45 81 - |
46 83 - |
47 85 - |
48 87 - |
49 89 - |
50 91 - |
51 93 - |
52 95 - |
53 97 - |
54 99 - |
55 101 - |
56 103 - |
57 105 - |
58 107 - |
59 109 - |
60 111 - |
61 113 - |
62 115 - |
63 117 - |
64 119 - |
65 121 - |
66 123 - |
67 125 - |
68 127 - |
69 129 - |
70 131 - |
71 133 - |
72 135 - |
73 137 - |
74 139 - |
75 141 - |
76 143 - |
77 145 - |
78 147 - |
79 149 - |
80 151 - |
81 153 - |
82 155 - |
83 157 - |
84 159 - |
85 161 - |
86 163 - |
87 165 - |
88 167 - |
89 169 - |
90 171 - |
91 173 - |
92 175 - |
93 177 - |
94 179 - |
95 181 - |
96 183 - |
97 185 - |
98 187 - |
99 189 - |
100 192 - |
101 195 - |
102 198 - |
103 201 - |
104 204 177 |
105 207 - |
106 210 - |
107 213 - |
108 216 - |
109 219 156 |
110 222 - |
111 225 - |
112 228 - |
113 231 157 |
114 234 162 |
115 237 202 |
116 240 - |
117 243 172 |
118 246 174 |
119 249 239 |
120 252 241 |
121 255 - |
122 258 - |
123 261 169 |
124 264 242 |
125 267 224 |
126 270 - |
127 273 245 |
128 276 243 |
129 279 277 |
130 282 269 |
131 285 256 |
132 288 272 |
133 291 272 |
134 294 243 |
135 297 254 |
136 300 253 |
137 303 258 |
138 306 277 |
139 309 252 |
140 312 248 |
141 315 - |
142 318 282 |
143 321 317 |
144 324 - |
145 327 318 |
146 330 296 |
147 333 276 |
148 336 - |
149 339 331 |
150 342 296 |
151 345 335 |
152 348 - |
153 351 322 |
154 354 279 |
155 357 - |
156 360 354 |
157 363 318 |
158 366 334 |
159 369 261 |
160 372 292 |
161 375 - |
162 378 325 |
163 381 330 |
164 384 349 |
165 387 - |
166 390 - |
167 393 389 |
168 396 - |
169 399 391 |
170 402 382 |
171 405 347 |
172 408 403 |
173 411 394 |
174 414 381 |
175 417 403 |
176 420 369 |
177 423 382 |
178 426 - |
179 429 423 |
180 432 422 |
181 435 406 |
182 438 429 |
183 441 387 |
184 444 - |
185 447 409 |
186 450 425 |
187 453 - |
188 456 454 |
189 459 410 |
190 462 - |
191 465 429 |
192 468 463 |
193 471 413 |
194 474 373 |
195 477 - |
196 480 - |
197 483 461 |
198 486 453 |
199 489 486 |
200 492 488 |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 1 - |
2 2 - |
3 3 - |
4 4 - |
5 5 - |
6 6 - |
7 7 - |
8 8 - |
9 9 - |
10 11 - |
11 13 - |
12 15 - |
13 17 - |
14 19 - |
15 21 - |
16 23 - |
17 25 - |
18 27 - |
19 29 - |
20 31 - |
21 33 - |
22 35 - |
23 37 - |
24 39 - |
25 41 - |
26 43 - |
27 45 - |
28 47 - |
29 49 - |
30 51 - |
31 53 - |
32 55 - |
33 57 - |
34 59 - |
35 61 - |
36 63 - |
37 65 - |
38 67 - |
39 69 - |
40 71 - |
41 73 - |
42 75 - |
43 77 - |
44 79 - |
45 81 - |
46 83 - |
47 85 - |
48 87 - |
49 89 - |
50 91 - |
51 93 - |
52 95 - |
53 97 - |
54 99 - |
55 101 - |
56 103 - |
57 105 - |
58 107 - |
59 109 - |
60 111 - |
61 113 - |
62 115 - |
63 117 - |
64 119 - |
65 121 - |
66 123 - |
67 125 - |
68 127 - |
69 129 - |
70 131 - |
71 133 - |
72 135 - |
73 137 - |
74 139 - |
75 141 - |
76 143 - |
77 145 - |
78 147 - |
79 149 - |
80 151 - |
81 153 - |
82 155 - |
83 157 - |
84 159 - |
85 161 - |
86 163 - |
87 165 - |
88 167 - |
89 169 - |
90 171 - |
91 173 - |
92 175 - |
93 177 - |
94 179 - |
95 181 - |
96 183 - |
97 185 - |
98 187 - |
99 189 - |
100 192 - |
101 195 - |
102 198 - |
103 201 - |
104 204 - |
105 207 - |
106 210 - |
107 213 179 |
108 216 - |
109 219 - |
110 222 183 |
111 225 200 |
112 228 214 |
113 231 219 |
114 234 228 |
115 237 225 |
116 240 - |
117 243 - |
118 246 - |
119 249 247 |
120 252 249 |
121 255 248 |
122 258 245 |
123 261 - |
124 264 259 |
125 267 - |
126 270 255 |
127 273 255 |
128 276 263 |
129 279 257 |
130 282 264 |
131 285 239 |
132 288 - |
133 291 - |
134 294 266 |
135 297 251 |
136 300 300 |
137 303 278 |
138 306 292 |
139 309 283 |
140 312 289 |
141 315 307 |
142 318 290 |
143 321 - |
144 324 304 |
145 327 296 |
146 330 304 |
147 333 321 |
148 336 294 |
149 339 329 |
150 342 337 |
151 345 335 |
152 348 - |
153 351 328 |
154 354 339 |
155 357 347 |
156 360 355 |
157 363 353 |
158 366 336 |
159 369 340 |
160 372 339 |
161 375 328 |
162 378 361 |
163 381 349 |
164 384 - |
165 387 386 |
166 390 344 |
167 393 347 |
168 396 362 |
169 399 399 |
170 402 - |
171 405 330 |
172 408 - |
173 411 407 |
174 414 - |
175 417 405 |
176 420 358 |
177 423 - |
178 426 - |
179 429 411 |
180 432 413 |
181 435 409 |
182 438 - |
183 441 437 |
184 444 424 |
185 447 432 |
186 450 448 |
187 453 423 |
188 456 445 |
189 459 433 |
190 462 447 |
191 465 - |
192 468 464 |
193 471 462 |
194 474 426 |
195 477 471 |
196 480 463 |
197 483 440 |
198 486 - |
199 489 483 |
200 492 485 |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 1 - |
2 2 - |
3 3 - |
4 4 - |
5 5 - |
6 6 - |
7 7 - |
8 8 - |
9 9 - |
10 10 - |
11 11 - |
12 12 - |
13 13 - |
14 14 - |
15 15 - |
16 16 - |
17 17 - |
18 18 - |
19 19 - |
20 20 - |
21 21 - |
22 22 - |
23 23 - |
24 24 - |
25 25 - |
26 26 - |
27 27 - |
28 28 - |
29 29 - |
30 30 - |
31 31 - |
32 32 - |
33 33 - |
34 34 - |
35 35 - |
36 36 - |
37 37 - |
38 38 - |
39 39 - |
40 40 - |
41 41 - |
42 42 - |
43 43 - |
44 44 - |
45 45 - |
46 46 - |
47 47 - |
48 48 - |
49 49 - |
50 50 - |
51 51 - |
52 52 - |
53 53 - |
54 54 - |
55 55 - |
56 56 - |
57 57 - |
58 58 - |
59 59 - |
60 60 - |
61 61 - |
62 62 - |
63 63 - |
64 64 - |
65 65 - |
66 66 - |
67 67 - |
68 68 - |
69 69 - |
70 70 - |
71 71 - |
72 72 - |
73 73 - |
74 74 - |
75 75 - |
76 76 - |
77 77 - |
78 78 - |
79 79 - |
80 80 - |
81 81 - |
82 82 - |
83 83 - |
84 84 - |
85 85 - |
86 86 - |
87 87 - |
88 88 - |
89 89 - |
90 90 - |
91 91 - |
92 92 - |
93 93 - |
94 94 - |
95 95 - |
96 96 - |
97 97 - |
98 98 - |
99 99 - |
100 100 - |
101 101 - |
102 102 - |
103 103 - |
104 104 - |
105 105 - |
106 106 - |
107 107 - |
108 108 - |
109 109 - |
110 110 - |
111 111 - |
112 112 - |
113 113 - |
114 114 - |
115 115 - |
116 116 - |
117 117 - |
118 118 - |
119 119 - |
120 120 - |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
n L C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 1 - |
2 2 - |
3 3 - |
4 4 - |
5 6 - |
6 8 - |
7 10 - |
8 12 - |
9 14 - |
10 16 - |
11 18 - |
12 20 - |
13 22 - |
14 24 - |
15 26 - |
16 28 - |
17 30 - |
18 32 - |
19 34 - |
20 36 - |
21 38 - |
22 40 - |
23 42 - |
24 44 - |
25 46 - |
26 49 - |
27 52 - |
28 55 - |
29 58 - |
30 61 - |
31 64 - |
32 67 - |
33 70 - |
34 73 - |
35 76 - |
36 79 - |
37 82 - |
38 85 - |
39 88 - |
40 91 - |
41 94 - |
42 97 - |
43 100 - |
44 103 - |
45 106 - |
46 109 - |
47 112 - |
48 115 - |
49 118 - |
50 121 - |
51 124 - |
52 127 - |
53 130 - |
54 133 - |
55 136 - |
56 139 - |
57 142 - |
58 145 - |
59 148 - |
60 151 - |
61 154 - |
62 157 - |
63 160 - |
64 163 - |
65 166 - |
66 169 - |
67 172 - |
68 175 - |
69 178 - |
70 181 164 |
71 184 164 |
72 187 - |
73 190 - |
74 193 - |
75 196 177 |
76 199 167 |
77 202 157 |
78 205 200 |
79 208 - |
80 211 171 |
81 214 - |
82 217 202 |
83 220 - |
84 223 - |
85 226 - |
86 229 161 |
87 232 - |
88 235 189 |
89 238 160 |
90 241 210 |
91 244 206 |
92 247 234 |
93 250 227 |
94 253 241 |
95 256 189 |
96 259 - |
97 262 228 |
98 265 - |
99 268 239 |
100 271 239 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |